caffe学习记录2——blobs

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了caffe学习记录2——blobs相关的知识,希望对你有一定的参考价值。

参考:caffe官网  2016-01-23 10:08:22

1 blobs,layers,nets是caffe模型的骨架

2 blobs是作者写好的数据存储的“容器”,可以有效实现CPU和GPU之间的同步(隐藏了这些复杂的操作),搬移,传递等。它提供了统一的接口,可以存储数据,如batches of images, model parameters, and derivatives for optimization等。

3 blobs最后一层改变最快。若blobs为(n, k, h, w),即寻址时,地址加1是最后一维n加1.

5 Number / N is the batch size of the data和Channel / K is the feature dimension

6 使用blobs中通常存储data and diff ,前者是数据的值,后者是梯度值。进一步地,可以存在cpu中,也可以存在GPU中,访问有两种方式:

1 const Dtype* cpu_data() const;
2 Dtype* mutable_cpu_data(); 

(similarly for gpu and diff).

7 在GPU模式中,按照cpu模式将数据拷贝到blobs中,然后调用设备核去进行GPU计算,并将数据运到高层。只要所有层都配置了GPU模式,中间的计算过程的数据都保留在GPU中。判断Blobs是否拷贝了数据:

 1 // Assuming that data are on the CPU initially, and we have a blob.
 2 const Dtype* foo;
 3 Dtype* bar;
 4 foo = blob.gpu_data(); // data copied cpu->gpu.
 5 foo = blob.cpu_data(); // no data copied since both have up-to-date contents.
 6 bar = blob.mutable_gpu_data(); // no data copied.
 7 // ... some operations ...
 8 bar = blob.mutable_gpu_data(); // no data copied when we are still on GPU.
 9 foo = blob.cpu_data(); // data copied gpu->cpu, since the gpu side has modified the data
10 foo = blob.gpu_data(); // no data copied since both have up-to-date contents
11 bar = blob.mutable_cpu_data(); // still no data copied.
12 bar = blob.mutable_gpu_data(); // data copied cpu->gpu.
13 bar = blob.mutable_cpu_data(); // data copied gpu->cpu.

 

以上是关于caffe学习记录2——blobs的主要内容,如果未能解决你的问题,请参考以下文章

梳理caffe代码blob

梳理caffe代码blob

Caffe 学习:Crop 层

Caffe学习系列(16):caffe的整体流程

Caffe Blob测试

记录神经网络中一些小知识点