梳理caffe代码blob

Posted yxysuanfa

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了梳理caffe代码blob相关的知识,希望对你有一定的参考价值。

贯穿整个caffe的就是数据blob:

#ifndef CAFFE_BLOB_HPP_
#define CAFFE_BLOB_HPP_

#include <algorithm>
#include <string>
#include <vector>

#include "caffe/common.hpp"
#include "caffe/proto/caffe.pb.h"
#include "caffe/syncedmem.hpp"
#include "caffe/util/math_functions.hpp"

const int kMaxBlobAxes = INT_MAX;//blob最大维数目

namespace caffe {

/**
 * @brief A wrapper around SyncedMemory holders serving as the basic
 *        computational unit through which Layer%s, Net%s, and Solver%s
 *        interact.
 *
 * TODO(dox): more thorough description.
 */


template <typename Dtype>
class Blob {
 public:
  Blob()//默认构造函数
       : data_(), diff_(), count_(0), capacity_(0) {}

  /// @brief Deprecated; use <code>Blob(const vector<int>& shape)</code>.
  //explicitkeyword的作用是禁止单參数构造函数的隐式转换
  explicit Blob(const int num, const int channels, const int height,
      const int width);
  explicit Blob(const vector<int>& shape);

  /// @brief Deprecated; use <code>Reshape(const vector<int>& shape)</code>.
/*
Reshape函数将num,channels,height,width传递给vector shape_ 
*/
  void Reshape(const int num, const int channels, const int height,
      const int width);
 /**
 *Blob作为一个最基础的类,当中构造函数开辟一个内存空间来存储数据。Reshape函数在Layer中的
 *reshape或者forward 操作中来adjust the dimensions of a top blob。同一时候在改变Blob大小时,
 *内存将会被又一次分配假设内存大小不够了,而且额外的内存将不会被释放。

对input的blob进行reshape, *假设立刻调用Net::Backward是会出错的,由于reshape之后,要么Net::forward或者Net::Reshape就会 *被调用来将新的input shape 传播到高层 */ //依据shape来初始化shape_和shape_data_,以及为data_ 和diff_ 分配空间。

void Reshape(const vector<int>& shape); void Reshape(const BlobShape& shape); void ReshapeLike(const Blob& other); //iniline主要是将代码进行复制,扩充,会使代码总量上升,优点就是能够节省调用的开销,以string形式获取shape_。用于打印blob的log inline string shape_string() const { ostringstream stream; for (int i = 0; i < shape_.size(); ++i) { stream << shape_[i] << " "; } stream << "(" << count_ << ")"; return stream.str(); } //获取shape_ inline const vector<int>& shape() const { return shape_; } /** * @brief Returns the dimension of the index-th axis (or the negative index-th * axis from the end, if index is negative). * * @param index the axis index, which may be negative as it will be * "canonicalized" using CanonicalAxisIndex. * Dies on out of range index. */ //获取index维的大小,返回某一维的尺寸 inline int shape(int index) const { return shape_[CanonicalAxisIndex(index)]; } //获取维的个数 inline int num_axes() const { return shape_.size(); } //获取当前data的大小 inline int count() const { return count_; } /** * @brief Compute the volume of a slice; i.e., the product of dimensions * among a range of axes. * * @param start_axis The first axis to include in the slice. * * @param end_axis The first axis to exclude from the slice. */ /*多个count()函数,主要还是为了统计Blob的容量(volume)。或者是某一片(slice), 从某个axis到详细某个axis的shape乘积。 */ //获取某几维数据的大小 inline int count(int start_axis, int end_axis) const { CHECK_LE(start_axis, end_axis); CHECK_GE(start_axis, 0); CHECK_GE(end_axis, 0); CHECK_LE(start_axis, num_axes()); CHECK_LE(end_axis, num_axes()); int count = 1; for (int i = start_axis; i < end_axis; ++i) { count *= shape(i); } return count; } /** * @brief Compute the volume of a slice spanning from a particular first * axis to the final axis. * * @param start_axis The first axis to include in the slice. */ //获取某一维到结束数据的大小 inline int count(int start_axis) const { return count(start_axis, num_axes()); } /** * @brief Returns the 'canonical' version of a (usually) user-specified axis, * allowing for negative indexing (e.g., -1 for the last axis). * * @param index the axis index. * If 0 <= index < num_axes(), return index. * If -num_axes <= index <= -1, return (num_axes() - (-index)), * e.g., the last axis index (num_axes() - 1) if index == -1, * the second to last if index == -2, etc. * Dies on out of range index. */ //Blob的Index是能够从负坐标開始读的,标准化索引。主要是对參数索引进行标准化,以满足要求,转换坐标轴索引[-N。N]为[0,N] inline int CanonicalAxisIndex(int axis_index) const { CHECK_GE(axis_index, -num_axes()) << "axis " << axis_index << " out of range for " << num_axes() << "-D Blob with shape " << shape_string(); CHECK_LT(axis_index, num_axes()) << "axis " << axis_index << " out of range for " << num_axes() << "-D Blob with shape " << shape_string(); if (axis_index < 0) { return axis_index + num_axes(); } return axis_index; } //Blob中的4个基本变量num,channel,height,width能够直接通过shape(0),shape(1),shape(2),shape(3)来訪问 /// @brief Deprecated legacy shape accessor num: use shape(0) instead. inline int num() const { return LegacyShape(0); } /// @brief Deprecated legacy shape accessor channels: use shape(1) instead. inline int channels() const { return LegacyShape(1); } /// @brief Deprecated legacy shape accessor height: use shape(2) instead. inline int height() const { return LegacyShape(2); } /// @brief Deprecated legacy shape accessor width: use shape(3) instead. inline int width() const { return LegacyShape(3); } //data_维数不大于4时才干使用。功能同shape()相似。 inline int LegacyShape(int index) const { CHECK_LE(num_axes(), 4) << "Cannot use legacy accessors on Blobs with > 4 axes."; CHECK_LT(index, 4); CHECK_GE(index, -4); if (index >= num_axes() || index < -num_axes()) { // Axis is out of range, but still in [0, 3] (or [-4, -1] for reverse // indexing) -- this special case simulates the one-padding used to fill // extraneous axes of legacy blobs. return 1; } return shape(index); } //计算offset,offset计算的方式也支持两种方式。一种直接指定n,c,h,w或者放到一个vector中进行计算。 //偏移量是依据相应的n,c,h,w,返回的offset是((n*channels()+c)*height()+h)*width()+w inline int offset(const int n, const int c = 0, const int h = 0, const int w = 0) const { CHECK_GE(n, 0); CHECK_LE(n, num()); CHECK_GE(channels(), 0); CHECK_LE(c, channels()); CHECK_GE(height(), 0); CHECK_LE(h, height()); CHECK_GE(width(), 0); CHECK_LE(w, width()); return ((n * channels() + c) * height() + h) * width() + w; } inline int offset(const vector<int>& indices) const { CHECK_LE(indices.size(), num_axes()); int offset = 0; for (int i = 0; i < num_axes(); ++i) { offset *= shape(i); if (indices.size() > i) { CHECK_GE(indices[i], 0); CHECK_LT(indices[i], shape(i)); offset += indices[i]; } } return offset; } /** * @brief Copy from a source Blob. * * @param source the Blob to copy from * @param copy_diff if false, copy the data; if true, copy the diff * @param reshape if false, require this Blob to be pre-shaped to the shape * of other (and die otherwise); if true, Reshape this Blob to other's * shape if necessary */ //按值拷贝blob到当前blob。一个blob中copy数据 ,通过开关控制是否copy_diff,假设是False则copy data。reshape控制是否须要reshape void CopyFrom(const Blob<Dtype>& source, bool copy_diff = false, bool reshape = false); /*这一部分函数主要通过给定的位置訪问数据,依据位置计算与数据起始 的偏差offset,在通过cpu_data*指针获得地址 */ //获取某位置的data_数据 inline Dtype data_at(const int n, const int c, const int h, const int w) const { return cpu_data()[offset(n, c, h, w)]; } //获取某位置的diff_数据 inline Dtype diff_at(const int n, const int c, const int h, const int w) const { return cpu_diff()[offset(n, c, h, w)]; } inline Dtype data_at(const vector<int>& index) const { return cpu_data()[offset(index)]; } inline Dtype diff_at(const vector<int>& index) const { return cpu_diff()[offset(index)]; } //获取data_ inline const shared_ptr<SyncedMemory>& data() const { CHECK(data_); return data_; } //获取diff_ inline const shared_ptr<SyncedMemory>& diff() const { CHECK(diff_); return diff_; } //这里有data和diff两类数据,而这个diff就是我们所熟知的偏差。前者主要存储 //前向传递的数据,而后者存储的是反向传播中的梯度 const Dtype* cpu_data() const;//仅仅读获取data_ cpu指针 void set_cpu_data(Dtype* data);//设置data_的cpu指针,仅仅是改动了指针 const Dtype* gpu_data() const;//获取data_的gpu指针 const Dtype* cpu_diff() const;//获取diff_的cpu指针 const Dtype* gpu_diff() const;//获取diff_的gpu指针 Dtype* mutable_cpu_data();//见SyncedMemory的mutable_cpu_data(),mutable是可读写訪问 Dtype* mutable_gpu_data();//见SyncedMemory的mutable_gpu_data(); Dtype* mutable_cpu_diff();//见SyncedMemory的mutable_cpu_data(); Dtype* mutable_gpu_diff();//见SyncedMemory的mutable_gpu_data(); //更新data_的数据,减去diff_的数据,就是合并data和diff void Update(); /* 当中用到math_functions.hpp中的函数caffe_axpy(),该函数封装了cblas_saxpy。实现的是Y=alpha*X+Y。

由此,知该函数的功能是data_=(data_-diff_)。另外。该函数仅仅实现了对double和float型数据, 对于unsigned int和int由于该函数主要是在Net中被调用。仅仅有Blob<float>和Blob<double>型式, 因此未定义unsigned int和int。

从proto中恢复一个blob对象 */ void FromProto(const BlobProto& proto, bool reshape = true); /* 由BlobProto对Blob进行赋值操作。reshape代表是否同意改动shape_的大小。 须要注意的是再这里有double和float两种类型的数据 ,将blob序列化为proto。在代码中能够看到详细的体现 */ void ToProto(BlobProto* proto, bool write_diff = false) const; /// @brief Compute the sum of absolute values (L1 norm) of the data. /* 功能:计算L1范数 说明:当中用到了math_function.hpp中的函数caffe_cpu_asum()和caffe_gpu_asum,实现的功能是对向量X求其每一个元素绝对值的和,不同的是X分别在cpu和gpu中。 */ Dtype asum_data() const; /// @brief Compute the sum of absolute values (L1 norm) of the diff. Dtype asum_diff() const; /// @brief Compute the sum of squares (L2 norm squared) of the data. /* 功能:计算L2范数。 说明:用到了math_function.hpp中的caffe_cpu_dot(),caffe_cpu_strided_dot(),caffe_gpu_dot(), caffe_gpu_strided_dot()。

详细就是就向量X的平方和。

*/ Dtype sumsq_data() const; /// @brief Compute the sum of squares (L2 norm squared) of the diff. Dtype sumsq_diff() const; /// @brief Scale the blob data by a constant factor. /* 功能:正规化data_。 说明:用到math_function.hpp中的caffe_scal()和caffe_gpu_scal()函数,就是对向量X乘上一个因子。 */ void scale_data(Dtype scale_factor); /// @brief Scale the blob diff by a constant factor. void scale_diff(Dtype scale_factor); /** * @brief Set the data_ shared_ptr to point to the SyncedMemory holding the * data_ of Blob other -- useful in Layer%s which simply perform a copy * in their Forward pass. * * This deallocates the SyncedMemory holding this Blob's data_, as * shared_ptr calls its destructor when reset with the "=" operator. */ void ShareData(const Blob& other);//本Blob共享other的data_ /** * @brief Set the diff_ shared_ptr to point to the SyncedMemory holding the * diff_ of Blob other -- useful in Layer%s which simply perform a copy * in their Forward pass. * * This deallocates the SyncedMemory holding this Blob's diff_, as * shared_ptr calls its destructor when reset with the "=" operator. */ void ShareDiff(const Blob& other);//本Blob共享other的diff_ bool ShapeEquals(const BlobProto& other);//推断other与本Blob形状是否同样。 protected: //data_指针。指针类型是shared_ptr。属于boost库的一个智能指针,这一部分主要用来申请内存存储data。data主要是正向传播的时候用的 shared_ptr<SyncedMemory> data_; //diff_主要用来存储偏差。update data shared_ptr<SyncedMemory> diff_; //shape_存储Blob的形状 vector<int> shape_; //count_表示Blob中的元素个数,也就是个数*通道数*高度*宽度 int count_; //capacity表示当前的元素个数。由于Blob可能会reshape int capacity_; DISABLE_COPY_AND_ASSIGN(Blob);//禁止拷贝和赋值运算 }; // class Blob } // namespace caffe #endif // CAFFE_BLOB_HPP_

顺便将实现部分也贴出来,方便对比:
#include <climits>
#include <vector>

#include "caffe/blob.hpp"
#include "caffe/common.hpp"
#include "caffe/syncedmem.hpp"
#include "caffe/util/math_functions.hpp"

namespace caffe {

template <typename Dtype>
//该函数将num,channels,height,width传递给vector shape_ 
void Blob<Dtype>::Reshape(const int num, const int channels, const int height,
    const int width) {
  vector<int> shape(4);
  shape[0] = num;
  shape[1] = channels;
  shape[2] = height;
  shape[3] = width;
  Reshape(shape);
}

template <typename Dtype>
void Blob<Dtype>::Reshape(const vector<int>& shape) {
  CHECK_LE(shape.size(), kMaxBlobAxes);
  count_ = 1;
  shape_.resize(shape.size());//又一次定义vector shape_ 的size
  for (int i = 0; i < shape.size(); ++i) {
    CHECK_GE(shape[i], 0);//确保shape 每一个元素为正数
    CHECK_LE(shape[i], INT_MAX / count_) << "blob size exceeds INT_MAX";
    count_ *= shape[i];
    shape_[i] = shape[i];
  }
  //因为count_超过了当前capacity_ 因此须要又一次分配内存空间
  if (count_ > capacity_) {
    capacity_ = count_;
    data_.reset(new SyncedMemory(capacity_ * sizeof(Dtype)));
    diff_.reset(new SyncedMemory(capacity_ * sizeof(Dtype)));
  }
}

template <typename Dtype>// BlobShape 在caffe.proto 中定义
void Blob<Dtype>::Reshape(const BlobShape& shape) {
  CHECK_LE(shape.dim_size(), kMaxBlobAxes);
  vector<int> shape_vec(shape.dim_size());
  for (int i = 0; i < shape.dim_size(); ++i) {
    shape_vec[i] = shape.dim(i);//dim 包括num。channels。height, width
  }
  Reshape(shape_vec);//用protobuf传递来dim 对shape_ 进行reshape
}
//用已知的Blob的shape来对shape_ 进行reshape
template <typename Dtype>
void Blob<Dtype>::ReshapeLike(const Blob<Dtype>& other) {
  Reshape(other.shape());
}
//用num。channels,height。 width 初始化
template <typename Dtype>
Blob<Dtype>::Blob(const int num, const int channels, const int height,
    const int width)
  // capacity_ must be initialized before calling Reshape
  : capacity_(0) {
  Reshape(num, channels, height, width);
}
//用shape 初始化
template <typename Dtype>
Blob<Dtype>::Blob(const vector<int>& shape)
  // capacity_ must be initialized before calling Reshape
  : capacity_(0) {
  Reshape(shape);
}
//返回cpu 中的数据
template <typename Dtype>
const Dtype* Blob<Dtype>::cpu_data() const {
  CHECK(data_);
  return (const Dtype*)data_->cpu_data();
}
// 清空cpu 数据
template <typename Dtype>
void Blob<Dtype>::set_cpu_data(Dtype* data) {
  CHECK(data);
  data_->set_cpu_data(data);
}
//返回gpu 中的数据
template <typename Dtype>
const Dtype* Blob<Dtype>::gpu_data() const {
  CHECK(data_);
  return (const Dtype*)data_->gpu_data();
}
//反向传播导数diff_ 操作函数,返回cpu 中的数据
template <typename Dtype>
const Dtype* Blob<Dtype>::cpu_diff() const {
  CHECK(diff_);
  return (const Dtype*)diff_->cpu_data();
}
//返回gpu 中的数据
template <typename Dtype>
const Dtype* Blob<Dtype>::gpu_diff() const {
  CHECK(diff_);
  return (const Dtype*)diff_->gpu_data();
}

template <typename Dtype>
Dtype* Blob<Dtype>::mutable_cpu_data() {
  CHECK(data_);
  return static_cast<Dtype*>(data_->mutable_cpu_data());
}

template <typename Dtype>
Dtype* Blob<Dtype>::mutable_gpu_data() {
  CHECK(data_);
  return static_cast<Dtype*>(data_->mutable_gpu_data());
}

template <typename Dtype>
Dtype* Blob<Dtype>::mutable_cpu_diff() {
  CHECK(diff_);
  return static_cast<Dtype*>(diff_->mutable_cpu_data());
}

template <typename Dtype>
Dtype* Blob<Dtype>::mutable_gpu_diff() {
  CHECK(diff_);
  return static_cast<Dtype*>(diff_->mutable_gpu_data());
}
//当前的blob 的data_ 指向已知blob的数据
template <typename Dtype>
void Blob<Dtype>::ShareData(const Blob& other) {
  CHECK_EQ(count_, other.count());
  data_ = other.data();
}
//当前的blob 的diff_ 指向已知blob的反向传播导数
template <typename Dtype>
void Blob<Dtype>::ShareDiff(const Blob& other) {
  CHECK_EQ(count_, other.count());
  diff_ = other.diff();
}

// The "update" method is used for parameter blobs in a Net, which are stored
// as Blob<float> or Blob<double> -- hence we do not define it for
// Blob<int> or Blob<unsigned int>.
template <> void Blob<unsigned int>::Update() { NOT_IMPLEMENTED; }
template <> void Blob<int>::Update() { NOT_IMPLEMENTED; }
//Updata函数用于參数blob的更新(weight,bias 等减去相应的导数)
template <typename Dtype>
void Blob<Dtype>::Update() {
  // We will perform update based on where the data is located.
  switch (data_->head()) {
  case SyncedMemory::HEAD_AT_CPU://数据在cpu上,则在cpu上进行计算
    // perform computation on CPU
    caffe_axpy<Dtype>(count_, Dtype(-1),
        static_cast<const Dtype*>(diff_->cpu_data()),
        static_cast<Dtype*>(data_->mutable_cpu_data()));
    break;
  case SyncedMemory::HEAD_AT_GPU:
  case SyncedMemory::SYNCED:
#ifndef CPU_ONLY//假设未定义CPU_ONLY。且数据在gpu上,则在gpu上进行计算
    // perform computation on GPU
    caffe_gpu_axpy<Dtype>(count_, Dtype(-1),
        static_cast<const Dtype*>(diff_->gpu_data()),
        static_cast<Dtype*>(data_->mutable_gpu_data()));
#else
    NO_GPU;
#endif
    break;
  default:
    LOG(FATAL) << "Syncedmem not initialized.";
  }
}

template <> unsigned int Blob<unsigned int>::asum_data() const {
  NOT_IMPLEMENTED;
  return 0;
}

template <> int Blob<int>::asum_data() const {
  NOT_IMPLEMENTED;
  return 0;
}
//返回data_ 中全部 element 的绝对值之和
template <typename Dtype>
Dtype Blob<Dtype>::asum_data() const {
  if (!data_) { return 0; }
  switch (data_->head()) {
  case SyncedMemory::HEAD_AT_CPU:
    return caffe_cpu_asum(count_, cpu_data());
  case SyncedMemory::HEAD_AT_GPU:
  case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
  {
    Dtype asum;
    caffe_gpu_asum(count_, gpu_data(), &asum);
    return asum;
  }
#else
    NO_GPU;
#endif
  case SyncedMemory::UNINITIALIZED:
    return 0;
  default:
    LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();
  }
  return 0;
}

template <> unsigned int Blob<unsigned int>::asum_diff() const {
  NOT_IMPLEMENTED;
  return 0;
}

template <> int Blob<int>::asum_diff() const {
  NOT_IMPLEMENTED;
  return 0;
}
//返回diff_ 中全部 element 的绝对值之和
template <typename Dtype>
Dtype Blob<Dtype>::asum_diff() const {
  if (!diff_) { return 0; }
  switch (diff_->head()) {
  case SyncedMemory::HEAD_AT_CPU:
    return caffe_cpu_asum(count_, cpu_diff());
  case SyncedMemory::HEAD_AT_GPU:
  case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
  {
    Dtype asum;
    caffe_gpu_asum(count_, gpu_diff(), &asum);
    return asum;
  }
#else
    NO_GPU;
#endif
  case SyncedMemory::UNINITIALIZED:
    return 0;
  default:
    LOG(FATAL) << "Unknown SyncedMemory head state: " << diff_->head();
  }
  return 0;
}

template <> unsigned int Blob<unsigned int>::sumsq_data() const {
  NOT_IMPLEMENTED;
  return 0;
}

template <> int Blob<int>::sumsq_data() const {
  NOT_IMPLEMENTED;
  return 0;
}
//返回 data_ 中全部 element 的平方和
template <typename Dtype>
Dtype Blob<Dtype>::sumsq_data() const {
  Dtype sumsq;
  const Dtype* data;
  if (!data_) { return 0; }
  switch (data_->head()) {
  case SyncedMemory::HEAD_AT_CPU:
    data = cpu_data();
    sumsq = caffe_cpu_dot(count_, data, data);
    break;
  case SyncedMemory::HEAD_AT_GPU:
  case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
    data = gpu_data();
    caffe_gpu_dot(count_, data, data, &sumsq);
#else
    NO_GPU;
#endif
    break;
  case SyncedMemory::UNINITIALIZED:
    return 0;
  default:
    LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();
  }
  return sumsq;
}

template <> unsigned int Blob<unsigned int>::sumsq_diff() const {
  NOT_IMPLEMENTED;
  return 0;
}

template <> int Blob<int>::sumsq_diff() const {
  NOT_IMPLEMENTED;
  return 0;
}
//返回 diff_ 中全部 element 的平方和
template <typename Dtype>
Dtype Blob<Dtype>::sumsq_diff() const {
  Dtype sumsq;
  const Dtype* diff;
  if (!diff_) { return 0; }
  switch (diff_->head()) {
  case SyncedMemory::HEAD_AT_CPU:
    diff = cpu_diff();
    sumsq = caffe_cpu_dot(count_, diff, diff);
    break;
  case SyncedMemory::HEAD_AT_GPU:
  case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
    diff = gpu_diff();
    caffe_gpu_dot(count_, diff, diff, &sumsq);
    break;
#else
    NO_GPU;
#endif
  case SyncedMemory::UNINITIALIZED:
    return 0;
  default:
    LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();
  }
  return sumsq;
}

template <> void Blob<unsigned int>::scale_data(unsigned int scale_factor) {
  NOT_IMPLEMENTED;
}

template <> void Blob<int>::scale_data(int scale_factor) {
  NOT_IMPLEMENTED;
}
// 给data乘以scale_factor
template <typename Dtype>
void Blob<Dtype>::scale_data(Dtype scale_factor) {
  Dtype* data;
  if (!data_) { return; }
  switch (data_->head()) {
  case SyncedMemory::HEAD_AT_CPU:
    data = mutable_cpu_data();
    caffe_scal(count_, scale_factor, data);
    return;
  case SyncedMemory::HEAD_AT_GPU:
  case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
    data = mutable_gpu_data();
    caffe_gpu_scal(count_, scale_factor, data);
    return;
#else
    NO_GPU;
#endif
  case SyncedMemory::UNINITIALIZED:
    return;
  default:
    LOG(FATAL) << "Unknown SyncedMemory head state: " << data_->head();
  }
}

template <> void Blob<unsigned int>::scale_diff(unsigned int scale_factor) {
  NOT_IMPLEMENTED;
}

template <> void Blob<int>::scale_diff(int scale_factor) {
  NOT_IMPLEMENTED;
}
// 给diff乘以scale_factor
template <typename Dtype>
void Blob<Dtype>::scale_diff(Dtype scale_factor) {
  Dtype* diff;
  if (!diff_) { return; }
  switch (diff_->head()) {
  case SyncedMemory::HEAD_AT_CPU:
    diff = mutable_cpu_diff();
    caffe_scal(count_, scale_factor, diff);
    return;
  case SyncedMemory::HEAD_AT_GPU:
  case SyncedMemory::SYNCED:
#ifndef CPU_ONLY
    diff = mutable_gpu_diff();
    caffe_gpu_scal(count_, scale_factor, diff);
    return;
#else
    NO_GPU;
#endif
  case SyncedMemory::UNINITIALIZED:
    return;
  default:
    LOG(FATAL) << "Unknown SyncedMemory head state: " << diff_->head();
  }
}
//BlobProto 是定义在caffe.proto 中的一个message,其字段有 data,diff,shape,num,channels,height,width
template <typename Dtype>
bool Blob<Dtype>::ShapeEquals(const BlobProto& other) {
  if (other.has_num() || other.has_channels() ||
      other.has_height() || other.has_width()) {
    // Using deprecated 4D Blob dimensions --
    // shape is (num, channels, height, width).
    // Note: we do not use the normal Blob::num(), Blob::channels(), etc.
    // methods as these index from the beginning of the blob shape, where legacy
    // parameter blobs were indexed from the end of the blob shape (e.g., bias
    // Blob shape (1 x 1 x 1 x N), IP layer weight Blob shape (1 x 1 x M x N)).
    return shape_.size() <= 4 &&
           LegacyShape(-4) == other.num() &&
           LegacyShape(-3) == other.channels() &&
           LegacyShape(-2) == other.height() &&
           LegacyShape(-1) == other.width();
  }
  vector<int> other_shape(other.shape().dim_size());
  for (int i = 0; i < other.shape().dim_size(); ++i) {
    other_shape[i] = other.shape().dim(i);
  }
  return shape_ == other_shape;
}//检查当前的blob和已知的 other 的 shape 是否同样,同样返回true

template <typename Dtype>
void Blob<Dtype>::CopyFrom(const Blob& source, bool copy_diff, bool reshape) {
  if (source.count() != count_ || source.shape() != shape_) {
    if (reshape) {
      ReshapeLike(source);
    } else {
      LOG(FATAL) << "Trying to copy blobs of different sizes.";
    }
  }
  switch (Caffe::mode()) {
  case Caffe::GPU:
    if (copy_diff) {
      caffe_copy(count_, source.gpu_diff(),
          static_cast<Dtype*>(diff_->mutable_gpu_data()));
    } else {
      caffe_copy(count_, source.gpu_data(),
          static_cast<Dtype*>(data_->mutable_gpu_data()));
    }
    break;
  case Caffe::CPU:
    if (copy_diff) {
      caffe_copy(count_, source.cpu_diff(),
          static_cast<Dtype*>(diff_->mutable_cpu_data()));
    } else {
      caffe_copy(count_, source.cpu_data(),
          static_cast<Dtype*>(data_->mutable_cpu_data()));
    }
    break;
  default:
    LOG(FATAL) << "Unknown caffe mode.";
  }
}//从source 拷贝数据,copy_diff控制是拷贝diff还是data

template <typename Dtype>
void Blob<Dtype>::FromProto(const BlobProto& proto, bool reshape) {
  if (reshape) {
    vector<int> shape;
    if (proto.has_num() || proto.has_channels() ||
        proto.has_height() || proto.has_width()) {
      // Using deprecated 4D Blob dimensions --
      // shape is (num, channels, height, width).
      shape.resize(4);
      shape[0] = proto.num();
      shape[1] = proto.channels();
      shape[2] = proto.height();
      shape[3] = proto.width();
    } else {
      shape.resize(proto.shape().dim_size());
      for (int i = 0; i < proto.shape().dim_size(); ++i) {
        shape[i] = proto.shape().dim(i);
      }
    }
    Reshape(shape);
  } else {//假设不做reshape要求当前的blob的shape和proto传入的shape同样
    CHECK(ShapeEquals(proto)) << "shape mismatch (reshape not set)";
  }
  // copy data
  Dtype* data_vec = mutable_cpu_data();
  for (int i = 0; i < count_; ++i) {
    data_vec[i] = proto.data(i);
  }//将proto传入的data复制到cpu数据
  if (proto.diff_size() > 0) {
    Dtype* diff_vec = mutable_cpu_diff();
    for (int i = 0; i < count_; ++i) {
      diff_vec[i] = proto.diff(i);
    }//将proto传入的diff 复制到cpu数据
  }
}

template <typename Dtype>
void Blob<Dtype>::ToProto(BlobProto* proto, bool write_diff) const {
  proto->clear_shape();
  for (int i = 0; i < shape_.size(); ++i) {
    proto->mutable_shape()->add_dim(shape_[i]);
  }
  proto->clear_data();
  proto->clear_diff();
  const Dtype* data_vec = cpu_data();
  for (int i = 0; i < count_; ++i) {
    proto->add_data(data_vec[i]);//将data写入proto
  }
  if (write_diff) {
    const Dtype* diff_vec = cpu_diff();
    for (int i = 0; i < count_; ++i) {
      proto->add_diff(diff_vec[i]);//将diff写入proto
    }
  }
}

INSTANTIATE_CLASS(Blob);
template class Blob<int>;
template class Blob<unsigned int>;

}  // namespace caffe


以上是关于梳理caffe代码blob的主要内容,如果未能解决你的问题,请参考以下文章

梳理caffe代码base_conv_layer(十八)

梳理caffe代码net

梳理caffe代码common

梳理caffe代码common

梳理caffe代码math_functions

Caffe Blob测试