为什么数据库索引查询会快

Posted xiaobaxiing

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了为什么数据库索引查询会快相关的知识,希望对你有一定的参考价值。

一、使用索引的好处

        创建索引可以大大提高系统的性能。第一,通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。第二,可以大大加快数据的检索速度,这也是创建索引的最主要的原因。第三,可以加速表和表之间的连接,特别是在实现数据的参考完整性方面特别有意义。第四,在使用分组和排序子句进行数据检索时,同样可以显著减少查询中分组和排序的时间。第五,通过使用索引,可以在查询的过程中,使用优化隐藏器,提高系统的性能。

 

二、索引的原理

       

数据在磁盘上是以块的形式存储的。为确保对磁盘操作的原子性,访问数据的时候会一并访问所有数据块。磁盘上的这些数据块与链表类似,即它们都包含一个数据段和一个指针,指针指向下一个节点(数据块)的内存地址,而且它们都不需要连续存储(即逻辑上相邻的数据块在物理上可以相隔很远)。

鉴于很多记录只能做到按一个字段排序,所以要查询某个未经排序的字段,就需要使用线性查找,即要访问N/2个数据块,其中N指的是一个表所涵盖的所有数据块。如果该字段是非键字段(也就是说,不包含唯一值),那么就要搜索整个表空间,即要访问全部N个数据块。

然而,对于经过排序的字段,可以使用二分查找,因此只要访问log2 N个数据块。同样,对于已经排过序的非键字段,只要找到更大的值,也就不用再搜索表中的其他数据块了。这样一来,性能就会有实质性的提升。

   

首先,来看一个示例数据库表的模式:

字段名              数据类型         在磁盘上的大小
id (Primary key)   Unsigned INT     4 字节
firstName          Char(50)         50 字节
lastName           Char(50)         50 字节
emailAddress       Char(100)        100 字节

注意:这里用char而不用varchar是为了精确地描述数据占用磁盘的大小。这个示例数据库中包含500万行记录,而且没有建立索引。接下来我们就分析针对这个表的两个查询:一个查询使用id(经过排序的键字段),另一个查询使用firstName(未经排序的非键字段)。

示例分析一

对于这个拥有r = 5 000 000条记录的示例数据库,在磁盘上要为每条记录分配 R = 204字节的固定存储空间。这个表保存在MyISAM数据库中,而这个数据库默认的数据库块大小为 B = 1024字节。于是,我们可计算出这个表的分块因数为 bfr = (B/R) = 1024/204 = 5,即磁盘上每个数据块保存5条记录。那么,保存整个表所需的数据块数就是 N = (r/bfr) = 5000000/5 = 1 000 000。

使用线性查找搜索id字段——这个字段是键字段(每个字段的值唯一),需要访问 N/2 = 500 000个数据块才能找到目标值。不过,因为这个字段是经过排序的,所以可以使用二分查找法,而这样平均只需要访问log2 1000000 = 19.93 = 20 个块。显然,这会给性能带来极大的提升。

再来看看firstName字段,这个字段是未经排序的,因此不可能使用二分查找,况且这个字段的值也不是唯一的,所以要从表的开头查找末尾,即要访问 N = 1 000 000个数据块。这种情况通过建立索引就能得到改善。

如果一条索引记录只包含索引字段和一个指向原始记录的指针,那么这条记录肯定要比它所指向的包含更多字段的记录更小。也就是说,索引本身占用的磁盘空间比原来的表更少,因此需要遍历的数据块数也比搜索原来的表更少。以下是firstName字段索引的模式:

字段名         数据类型        在磁盘上的大小
firstName     Char(50)        50 字节
(记录指针)    Special         4 字节

注意:在MySQL中,根据表的大小,指针的大小可能是2、3、4或5字节。

示例分析二

对于这个拥有r = 5 000 000条记录的示例数据库,每条索引记录要占用 R = 54字节磁盘空间,而且同样使用默认的数据块大小 B = 1024字节。那么索引的分块因数就是 bfr = (B/R) = 1024/54 = 18。最终这个表的索引需要占用 N = (r/bfr) = 5000000/18 = 277 778个数据块。

现在,再搜索firstName字段就可以使用索引来提高性能了。对索引使用二分查找,需要访问 log2 277778 = 18.09 = 19个数据块。再加上为找到实际记录的地址还要访问一个数据块,总共要访问 19 + 1 = 20个数据块,这与搜索未索引的表需要访问277 778个数据块相比,不啻于天壤之别。

 

三、什么时候建索引

        索引是建立在数据库表中的某些列的上面。因此,在创建索引的时候,应该仔细考虑在哪些列上可以创建索引,在哪些列上不能创建索引。一般来说,应该在这些列上创建索引,例如:在经常需要搜索的列上,可以加快搜索的速度;在作为主键的列上,强制该列的唯一性和组织表中数据的排列结构;在经常用在连接的列上,这些列主要是一些外键,可以加快连接的速度;在经常需要根据范围进行搜索的列上创建索引,因为索引已经排序,其指定的范围是连续的;在经常需要排序的列上创建索引,因为索引已经排序,这样查询可以利用索引的排序,加快排序查询时间;在经常使用在WHERE子句中的列上面创建索引,加快条件的判断速度。
同样,对于有些列不应该创建索引。一般来说,不应该创建索引的的这些列具有下列特点:第一,对于那些在查询中很少使用或者参考的列不应该创建索引。这是因为,既然这些列很少使用到,因此有索引或者无索引,并不能提高查询速度。相反,由于增加了索引,反而降低了系统的维护速度和增大了空间需求。第二,对于那些只有很少数据值的列也不应该增加索引。这是因为,由于这些列的取值很少,例如人事表的性别列,在查询的结果中,结果集的数据行占了表中数据行的很大比例,即需要在表中搜索的数据行的比例很大。增加索引,并不能明显加快检索速度。第三,对于那些定义为text, image和bit数据类型的列不应该增加索引。这是因为,这些列的数据量要么相当大,要么取值很少。第四,当修改性能远远大于检索性能时,不应该创建索引。这是因为,修改性能和检索性能是互相矛盾的。当增加索引时,会提高检索性能,但是会降低修改性能。当减少索引时,会提高修改性能,降低检索性能。因此,当修改性能远远大于检索性能时,不应该创建索引。

      

四、索引的常用种类及创建方法

这是最基本的索引,它没有任何限制。它有以下几种创建方式:

◆创建索引

CREATE INDEX indexName ON mytable(username(length)); 如果是CHAR,VARCHAR类型,length可以小于字段实际长度;如果是BLOB和TEXT类型,必须指定 length,下同。

◆修改表结构

ALTER mytable ADD INDEX [indexName] ON (username(length)) ◆创建表的时候直接指定

CREATE TABLE mytable(   ID INT NOT NULL,    username VARCHAR(16) NOT NULL,   INDEX [indexName] (username(length))   ); 

◆删除索引的语法:

DROP INDEX [indexName] ON mytable;

(2)唯一索引

它与前面的普通索引类似,不同的就是:索引列的值必须唯一,但允许有空值。如果是组合索引,则列值的组合必须唯一。它有以下几种创建方式:

◆创建索引

CREATE UNIQUE INDEX indexName ON mytable(username(length)) ◆修改表结构

ALTER mytable ADD UNIQUE [indexName] ON (username(length)) ◆创建表的时候直接指定

CREATE TABLE mytable(   ID INT NOT NULL,    username VARCHAR(16) NOT NULL,   UNIQUE [indexName] (username(length))   ); 

(3)主键索引

它是一种特殊的唯一索引,不允许有空值。一般是在建表的时候同时创建主键索引:

CREATE TABLE mytable(   ID INT NOT NULL,    username VARCHAR(16) NOT NULL,   PRIMARY KEY(ID)   );  当然也可以用 ALTER 命令。记住:一个表只能有一个主键。

(4)组合索引

为了形象地对比单列索引和组合索引,为表添加多个字段:

CREATE TABLE mytable(   ID INT NOT NULL,    username VARCHAR(16) NOT NULL,   city VARCHAR(50) NOT NULL,   age INT NOT NULL  );  为了进一步榨取mysql的效率,就要考虑建立组合索引。就是将 name, city, age建到一个索引里:

ALTER TABLE mytable ADD INDEX name_city_age (name(10),city,age); 建表时,usernname长度为 16,这里用 10。这是因为一般情况下名字的长度不会超过10,这样会加速索引查询速度,还会减少索引文件的大小,提高INSERT的更新速度。

如果分别在 usernname,city,age上建立单列索引,让该表有3个单列索引,查询时和上述的组合索引效率也会大不一样,远远低于我们的组合索引。虽然此时有了三个索引,但MySQL只能用到其中的那个它认为似乎是最有效率的单列索引。

建立这样的组合索引,其实是相当于分别建立了下面三组组合索引:

usernname,city,age   usernname,city   usernname  为什么没有 city,age这样的组合索引呢?这是因为MySQL组合索引“最左前缀”的结果。简单的理解就是只从最左面的开始组合。并不是只要包含这三列的查询都会用到该组合索引,下面的几个SQL就会用到这个组合索引:

SELECT * FROM mytable WHREE username="admin" AND city="郑州"  SELECT * FROM mytable WHREE username="admin" 而下面几个则不会用到:

SELECT * FROM mytable WHREE age=20 AND city="郑州"  SELECT * FROM mytable WHREE city="郑州"

以上是关于为什么数据库索引查询会快的主要内容,如果未能解决你的问题,请参考以下文章

Spark连接到MySQL并执行查询为啥速度会快

sqlsql优化

正确使用索引(sql优化),limit分页优化,执行计划,慢日志查询

mysql多表left join联合查询效率问题5

MySQL

java切分查询数据库表