k-近邻算法
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了k-近邻算法相关的知识,希望对你有一定的参考价值。
听朋友说machine Learning 很牛,特地买了本《机器学习实战》,了解机器学习,顺便学习python。。
第一个算法是kNN,很容易理解,简单实用,但是存储和计算的复杂度有点高,而且无法给出数据的内在含义。
书中介绍的两个实例,让我感觉机器学习确实很实用,以下是从《机器学习实战》中整理摘抄的python代码
实例1:实用kNN改进约会网站的配对效果
from numpy import * import operator from nt import listdir #kNN算法实现 def classify0(intx, dataSet, labels, k): dataSetSize = dataSet.shape[0] diffmat = tile(intx, (dataSetSize, 1)) - dataSet sqDiffMat = diffmat ** 2 sqDistances = sqDiffMat.sum(axis=1) distances = sqDistances ** 0.5 sortedDistIndicies = distances.argsort() classCount = {} for i in range(k): voteIlabel = labels[sortedDistIndicies[i]] # print(type(classCount)) classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1 sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True) return sortedClassCount[0][0] #从文件中获取数据 def fileTomatrix(filename): fr = open(filename) arrayLines = fr.readlines() numberOfLines = len(arrayLines) returnMat = zeros((numberOfLines, 3)) classLabelVector = [] index = 0 for line in arrayLines: line = line.strip() listFromLine = line.split(‘\t‘) returnMat[index, :] = listFromLine[0:3] classLabelVector.append(int(listFromLine[-1])) index += 1 return returnMat, classLabelVector #数据归一化 def autoNorm(dataSet): minVals = dataSet.min(0) maxVals = dataSet.max(0) ranges = maxVals - minVals normDataSet = zeros(shape(dataSet)) m = normDataSet.shape[0] normDataSet = dataSet - tile(minVals, (m, 1)) normDataSet = normDataSet / tile(ranges, (m, 1)) return normDataSet, ranges, minVals def classifyPerson(): result=[‘not at all‘, ‘in small doses‘, ‘in large doses‘] percentTats=float(input("percentage of time spent playing video games?")) ffMiles=float(input("frequent flier miles earned per years?")) iceCream=float(input("liters of iceCream consumed per year?")) inArr = array([ffMiles, percentTats, iceCream]) datingDataMat, datingLabels = fileTomatrix(‘dataSet.txt‘) normMat, ranges, minVals = autoNorm(datingDataMat) classifierResult = classify0((inArr - minVals) / ranges, normMat, datingLabels, 3) print("You will probably like this person:",result[classifierResult - 1])
实例2:实用kNN识别手写数字
from numpy import * import operator from nt import listdir #kNN算法实现 def classify0(intx, dataSet, labels, k): dataSetSize = dataSet.shape[0] diffmat = tile(intx, (dataSetSize, 1)) - dataSet sqDiffMat = diffmat ** 2 sqDistances = sqDiffMat.sum(axis=1) distances = sqDistances ** 0.5 sortedDistIndicies = distances.argsort() classCount = {} for i in range(k): voteIlabel = labels[sortedDistIndicies[i]] # print(type(classCount)) classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1 sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True) return sortedClassCount[0][0] def image2vector(filename): returnResult = zeros((1,1024)) fr = open(filename) for i in range(32): listStr = fr.readline() for j in range(32): returnResult[0,32*i+j] = int(listStr[j]) return returnResult def handwritingClassTest(): trainingFileList = listdir(‘trainingDigits‘) m = len(trainingFileList)
#得到训练数据 trainingMat = zeros((m,1024)) hwLabels = [] for i in range(m): fileNameStr = trainingFileList[i] fileStr= fileNameStr.split(‘.‘)[0] classNumStr = int(fileStr.split(‘_‘)[0]) hwLabels.append(classNumStr) trainingMat[i,:] = image2vector(‘trainingDigits/%s‘ % fileNameStr) testFileList = listdir(‘testDigits‘) errorCount = 0 mTest = len(testFileList) for i in range(mTest): fileNameStr = testFileList[i] fileStr= fileNameStr.split(‘.‘)[0] classNumStr = int(fileStr.split(‘_‘)[0]) vectorUnderTest = image2vector(‘testDigits/%s‘%fileNameStr) classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 5) print("the classifier came back with: %d,the real number is: %d" %(classifierResult,classNumStr)) if classifierResult != classNumStr: errorCount +=1 print("\nthe total number of errors is : %d" %errorCount) print("\nthe total error rate is %f" % (errorCount/mTest))
以上是关于k-近邻算法的主要内容,如果未能解决你的问题,请参考以下文章