POJ 2396 Budget 有上下界的网络流

Posted 逐雪

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ 2396 Budget 有上下界的网络流相关的知识,希望对你有一定的参考价值。

                                                             POJ 2396  Budget

题意简述:给定矩阵(每个元素都是非负整数)各行各列的和,并且限制其中的某些元素,给出一个可行解,特殊评测。矩阵规模小于200*20。

网络流的模型是显而易见的,不过对于这道题,我们要添加两次源和汇。

第一次添加s连接每一行,t连接每一列,容量上下线都是这行或这列的和。

第二次对每条有容量限制的边(u,v)添加 (ss,v)和( u,tt)容量均为( u,v)的下限。

第三次添加(t,s)容量无穷。

对(ss,tt)求最大流,若ss出发和进入tt的边均满流则有解,并且可以直接输出解。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<vector>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
const int maxm=200+50,INF=1e+8;
int k,ans[maxm][maxm],cap[maxm][maxm],flow[maxm][maxm],low[maxm][maxm],up[maxm][maxm],n,m;
 vector<int> next[maxm];

int d[maxm],fa[maxm],cur[maxm];
bool vis[maxm];
bool bfs(int s,int t)
{
 memset(vis,0,sizeof(vis));
 memset(d,0,sizeof(d));
 queue<int>q;
 vis[s]=true;q.push(s);
 while(!q.empty())
 	{
 	 int np=q.front();q.pop();
 	 for(int i=0;i<next[np].size();i++)
 	 	{
 	 	 int ne=next[np][i];
 	 	 if(cap[np][ne]<=flow[np][ne]||vis[ne])continue;
 	 	 q.push(ne);
 	 	 vis[ne]=true;
 	 	 d[ne]=d[np]+1;
		}
	}
 return vis[t];
}

int dfs(int now,int t,int flo)
{
 if(now==t||flo==0)return flo;
 int floww=0;
 for(int i=cur[now];i<next[now].size();i++)
 	{
 	 int np=next[now][i];
	 if(d[np]!=d[now]+1)continue;
	 if(cap[now][np]<=flow[now][np])continue;
	 int fn=dfs(np,t,min(flo,cap[now][np]-flow[now][np]));
	 flow[now][np]+=fn;
	 flow[np][now]-=fn;
	 floww+=fn;
	 flo-=fn;
	 if(flo==0)break; 
	 cur[now]++;
	}
 return floww;
}
int dinic(int s,int t)
{
 int ans=0;
 while(bfs(s,t))
 	{
 	 memset(cur,0,sizeof(cur));
 	 ans+=dfs(s,t,INF);
	}
 return ans;
}
void find(int s,int t)
{
 memset(d,0,sizeof(d));
 d[s]=INF;
 queue<int>q;
 q.push(s);
 while(!q.empty())
 	{
 	 int u=q.front();
 	 q.pop();
 	 for(int i=0;i<next[u].size();i++)
 	 	{
 	 	 int nextp=next[u][i];
 	 	 if(d[nextp]!=0||(cap[u][nextp]-flow[u][nextp])<=0)continue;
 	 	 d[nextp]=min(d[u],(cap[u][nextp]-flow[u][nextp]));
 	 	 q.push(nextp);
 	 	 fa[nextp]=u;
 	 	 if(nextp==t)
 	 	 	{
 	 	 	 while(!q.empty())q.pop();
 	 	 	 return ;
			}
		}
	}
}
int E_K(int s,int t)
{
 int ans=0;
 memset(fa,0,sizeof(fa));
 while(true)
 	{
 	 find(s,t);
 	 ans+=d[t];
 	 if(d[t]==0)break;
 	 for(int i=t;i!=s;i=fa[i])
 	 	{
 	 	 flow[fa[i]][i]+=d[t];
 	 	 flow[i][fa[i]]-=d[t];
		}
	}
 return ans;
}

void addedge(int a,int b,vector<int> next[])
{
 next[a].push_back(b);
 next[b].push_back(a);
 return ;
}
int main()
{
 int N;
 int s=249,t=s-1,ss=t-1,tt=ss-1;
 scanf("%d",&N);
 for(int ii=1;ii<=N;ii++)
{
    
     for(int i=0;i<maxm;i++)
     	while(next[i].size()>0)next[i].pop_back();
 	 memset(cap,0,sizeof(cap));memset(flow,0,sizeof(flow));
 	 memset(low,0,sizeof(low));memset(up,0,sizeof(up));
 	 scanf("%d%d",&m,&n);
 	 for(int i=1;i<=m;i++)
 	 	{
 	 	 int a;scanf("%d",&a);
 	 	 cap[s][i]=0;cap[ss][i]+=a;cap[s][tt]+=a;
 	 	 addedge(s,i,next);addedge(ss,i,next);addedge(i,tt,next);
 	 	 for(int j=201;j<=200+n;j++)
 	 	 	{
 	 	 	 addedge(i,j,next);
 	 	 	 up[i][j]=a;
			}
 	 	}
		addedge(s,tt,next);
	 for(int i=201;i<=200+n;i++)
	 	{
	 	 int a;scanf("%d",&a);
	 	 cap[i][t]=0;cap[ss][t]+=a;cap[i][tt]+=a;
	 	 addedge(i,t,next);addedge(i,tt,next);addedge(i,ss,next);
	 	 for(int j=1;j<=m;j++)
	 	 	up[j][i]=min(up[j][i],a);
		}
		addedge(ss,t,next);
 int k;
 scanf("%d",&k);
 for(int iii=0;iii<k;iii++)
 	{
 	 int a,b,c;char t;
 	 scanf("%d%d",&a,&b);t=getchar();t=getchar();scanf("%d",&c);
 	 int ia,ib,ja,jb;
 	 if(a==0){ia=1;ib=m;}
 	 	else {ia=ib=a;}
 	 if(b==0){ja=201;jb=200+n;}
 	 	else{ja=jb=(200+b);}
 	 for(int i=ia;i<=ib;i++)
 	 	for(int j=ja;j<=jb;j++)
 	 		{
 	 		 if(t==‘=‘)
 	 		 	{
 	 		 	 up[i][j]=min(up[i][j],c);low[i][j]=max(low[i][j],c);
				}
			 if(t==‘>‘)
			 	{
			 	 low[i][j]=max(low[i][j],c+1);
				}
			 if(t==‘<‘)
			 	{
			 	 up[i][j]=min(up[i][j],c-1);
				}
			}
	}
 for(int i=1;i<=m;i++)
	 	for(int j=201;j<=200+n;j++)
	 		{
	 		 cap[i][j]=up[i][j]-low[i][j];
	 		 cap[ss][j]+=low[i][j];
	 		 cap[i][tt]+=low[i][j];
			}
 next[t].push_back(s);cap[t][s]=INF;
 dinic(ss,tt);
 bool impo=false;
 for(int i=1;i<=m;i++)
 	{
 	 if(flow[ss][i]!=cap[ss][i]){impo=true;break;}
 	 if(flow[i][tt]!=cap[i][tt]){impo=true;break;}
	}
 for(int j=201;j<=200+n;j++)
 	{
 	 if(flow[ss][j]!=cap[ss][j]){impo=true;break;}
 	 if(flow[j][tt]!=cap[j][tt]){impo=true;break;}
	}
 	 if(flow[s][tt]!=cap[s][tt]){impo=true;}
 	 if(flow[ss][t]!=cap[ss][t]){impo=true;}
 if(impo){printf("IMPOSSIBLE\n\n");continue;}
 for(int i=1;i<=m;i++)
  {
 
 	for(int j=201;j<n+200;j++)
 		{
 		 printf("%d ",flow[i][j]+low[i][j]);
		}
	 printf("%d\n",flow[i][200+n]+low[i][200+n]);
	}
 printf("\n");
}
 return 0;
}

  

                                    

 

以上是关于POJ 2396 Budget 有上下界的网络流的主要内容,如果未能解决你的问题,请参考以下文章

poj 2396 Budget 边容量有上下界的最大流

POJ 2396 Budget (有源汇有上下界最大流)

POJ-2396-Budget

POJ-2396-Budget

POJ 2396 Budget(有源汇上下界网络流)

POJ2396 Budget