ElasticSearch自定义分析器-集成结巴分词插件

Posted derek.deng

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ElasticSearch自定义分析器-集成结巴分词插件相关的知识,希望对你有一定的参考价值。

关于结巴分词 ElasticSearch 插件:

https://github.com/huaban/elasticsearch-analysis-jieba

该插件由huaban开发。支持Elastic Search 版本<=2.3.5。

结巴分词分析器

结巴分词插件提供3个分析器:jieba_index、jieba_search和jieba_other。

  1. jieba_index: 用于索引分词,分词粒度较细;
  2. jieba_search: 用于查询分词,分词粒度较粗;
  3. jieba_other: 全角转半角、大写转小写、字符分词;

使用jieba_index或jieba_search分析器,可以实现基本的分词效果。

以下是最小配置示例:

{
    "mappings": {
        "test": {
            "_all": {
                "enabled": false
            },
            "properties": {
                "name": {
                    "type": "string",
                    "analyzer": "jieba_index",
                    "search_analyzer": "jieba_index"
                }
            }
        }
    }
}

在生产化境中,因为业务的需要,需要考虑实现以下功能:

  1. 支持同义词;
  2. 支持字符过滤器;

结巴插件提供的分析器jieba_index、jieba_search无法实现以上功能。

自定义分析器

当jieba_index、jieba_search分析器不满足生成环境的需求时,我们可以使用自定义分析器来解决以上问题。

分析器是由字符过滤器,分词器,词元过滤器组成的。

一个分词器允许包含多个字符过滤器+一个分词器+多个词元过滤器。

因业务的需求,我们需要使用映射字符过滤器来实现分词前某些字符串的替换操作。如将用户输入的c#替换为csharp,c++替换为cplus。

下面逐一介绍分析器各个组成部分。

1. 映射字符过滤器Mapping Char Filter

这个是Elastic Search内置的映射字符过滤器,位于settings –> analysis -> char_filter下:

PUT /my_index
{
    "settings": {
        "analysis": {
            "char_filter": {
                "mapping_filter": {
                    "type": "mapping",
                    "mappings": [
                      "c# => csharp",
                      "c++ => cplus"
                  ]
                }
            }
        }
    }
}

也可以通过文件载入字符映射表。

PUT /my_index
{
    "settings": {
        "analysis": {
            "char_filter": {
                "mapping_filter": {
                    "type": "mapping",
                    "mappings_path": "mappings.txt"
                }
            }
        }
    }
}

文件默认存放config目录下,即config/ mappings.txt。

2. 结巴分词词元过滤器JiebaTokenFilter

JiebaTokenFilter接受一个SegMode参数,该参数有两个可选值:Index和Search。

我们预先定义两个词元过滤器:jieba_index_filter和jieba_search_filter。

PUT /my_index
{
    "settings": {
        "analysis": {
            "filter": {
                "jieba_index_filter": {
                    "type": "jieba",
                    "seg_mode": "index"
                },
                "jieba_search_filter": {
                    "type": "jieba",
                    "seg_mode": "search"
                }
            }
        }
    }
}

 这两个词元过滤器将分别用于索引分析器和查询分析器。

3. stop 停用词词元过滤器

因分词词元过滤器JiebaTokenFilter并不处理停用词。因此我们在自定义分析器时,需要定义停用词词元过滤器来处理停用词。 

Elastic Search提供了停用词词元过滤器,我们可以这样来定义:

PUT /my_index
{
    "settings": {
        "analysis": {
            "filter": {
                "stop_filter": {
                    "type":       "stop",
                    "stopwords": ["and", "is", "the"]
                }
            }
        }
    }
}

也可以通过文件载入停用词列表 

PUT /my_index
{
    "settings": {
        "analysis": {
            "filter": {
                "stop_filter": {
                    "type": "stop",
                    "stopwords_path": "stopwords.txt"
                }
            }
        }
    }
}

文件默认存放config目录下,即config/ stopwords.txt。

4. synonym 同义词词元过滤器

我们使用ElasticSearch内置同义词词元过滤器来实现同义词的功能。

PUT /my_index
{
    "settings": {
        "analysis": {
            "filter": {
                "synonym_filter": {
                    "type": "synonym",
                    "stopwords": [
                      "中文,汉语,汉字"
                  ]
                }
            }
        }
    }
}

如果同义词量比较大时,推荐使用文件的方式载入同义词库。

PUT /my_index
{
    "settings": {
        "analysis": {
            "filter": {
                "synonym_filter ": {
                    "type": "synonym",
                    "stopwords_path": "synonyms.txt"
                }
            }
        }
    }
}

5. 重新定义分析器jieba_index和jieba_search

Elastic Search支持多级分词,我们使用whitespace分词作为分词器;并在词元过滤器加入定义好的Jiebie分词词元过滤器:jieba_index_filter和jieba_search_filter。 

PUT /my_index
{
    "settings": {
        "analysis": {
            "analyzer": {
                "jieba_index": {
                    "char_filter": [
                      "mapping_filter"
                  ],
                    "tokenizer": "whitespace",
                    "filter": [
                      "jieba_index_filter",
                      "stop_filter",
                      "synonym_filter"
                  ]
                },
                "jieba_search": {
                    "char_filter": [
                      "mapping_filter"
                  ],
                    "tokenizer": "whitespace",
                    "filter": [
                      "jieba_search_filter",
                      "stop_filter",
                      "synonym_filter"
                  ]
                }
            }
        }
    }
}

注意,上面分析器的命名依然使用jieba_index和jieba_search,以便覆盖结巴分词插件提供的分析器。

当存在多个同名的分析器时,Elastic Search会优先使用索引配置中定义的分析器。

这样在代码调用层面便无需再更改。 

下面是完整的配置:

PUT /my_index
{
    "settings": {
        "analysis": {
            "char_filter": {
                "mapping_filter": {
                    "type": "mapping",
                  "mappings_path": "mappings.txt"
                }
            }
            "filter": {
                "synonym_filter ": {
                    "type": "synonym",
                    "stopwords_path": "synonyms.txt"
                },
                "stop_filter": {
                    "type": "stop",
                    "stopwords_path": "stopwords.txt"
                },
                "jieba_index_filter": {
                    "type": "jieba",
                    "seg_mode": "index"
                },
                "jieba_search_filter": {
                    "type": "jieba",
                    "seg_mode": "search"
                }
            }
            "analyzer": {
                "jieba_index": {
                    "char_filter": [
                      "mapping_filter"
                  ],
                    "tokenizer": "whitespace",
                    "filter": [
                      "jieba_index_filter",
                      "stop_filter",
                      "synonym_filter"
                  ]
                },
                "jieba_search": {
                    "char_filter": [
                      "mapping_filter"
                  ],
                    "tokenizer": "whitespace",
                    "filter": [
                      "jieba_search_filter",
                      "stop_filter",
                      "synonym_filter"
                  ]
                }
            }
        }
    }
}

 参考资料:

https://www.elastic.co/guide/en/elasticsearch/reference/2.3/index.html

http://www.tuicool.com/articles/eUJJ3qF

以上是关于ElasticSearch自定义分析器-集成结巴分词插件的主要内容,如果未能解决你的问题,请参考以下文章

springboot集成elk 一: springboot + Elasticsearch

如何利用Python对中文进行分词处理

Elasticsearch7.8.0版本进阶——自定义分析器

Elasticsearch 自定义多个分析器

结巴分词详细讲解

python结巴(jieba)分词