结巴分词详细讲解

Posted palace

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了结巴分词详细讲解相关的知识,希望对你有一定的参考价值。

特点

  • 支持三种分词模式:

    • 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;
    • 精确模式,试图将句子最精确地切开,适合文本分析;
    • 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。
  • 支持繁体分词

  • 支持自定义词典
  • MIT 授权协议

算法

  • 基于前缀词典实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图 (DAG)
  • 采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合
  • 对于未登录词,采用了基于汉字成词能力的 HMM 模型,使用了 Viterbi 算法

主要功能

1. 分词

  • jieba.cut 方法接受三个输入参数: 需要分词的字符串;cut_all 参数用来控制是否采用全模式;HMM 参数用来控制是否使用 HMM 模型
  • jieba.cut_for_search 方法接受两个参数:需要分词的字符串;是否使用 HMM 模型。该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细
  • 待分词的字符串可以是 unicode 或 UTF-8 字符串、GBK 字符串。注意:不建议直接输入 GBK 字符串,可能无法预料地错误解码成 UTF-8
  • jieba.cut 以及 jieba.cut_for_search 返回的结构都是一个可迭代的 generator,可以使用 for 循环来获得分词后得到的每一个词语(unicode),或者用
  • jieba.lcut 以及 jieba.lcut_for_search 直接返回 list
  • jieba.Tokenizer(dictionary=DEFAULT_DICT) 新建自定义分词器,可用于同时使用不同词典。jieba.dt 为默认分词器,所有全局分词相关函数都是该分词器的映射
技术分享图片
技术分享图片
import jieba
seg_list = jieba.cut("我来到北京清华大学", cut_all=True)#
print ("Full Mode: " + "/ ".join(seg_list))#全模式

seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
print("Default Mode: " + "/ ".join(seg_list))#精确模式

seg_list = jieba.cut("他来到了网易杭研大厦")#默认是精确模式
print(", ".join(seg_list))

seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造")#搜索引擎模式
print(", ".join(seg_list))
技术分享图片
技术分享图片
技术分享图片
技术分享图片
【全模式】
Full Mode: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学 
【精确模式】
Default Mode: 我/ 来到/ 北京/ 清华大学 
【新词模式】
他, 来到, 了, 网易, 杭研, 大厦
注:(此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了)
【搜索引擎模式】
小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, ,, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造
技术分享图片
技术分享图片

2. 添加自定义词典

载入词典

  • 开发者可以指定自己自定义的词典,以便包含 jieba 词库里没有的词。虽然 jieba 有新词识别能力,但是自行添加新词可以保证更高的正确率
  • 用法: jieba.load_userdict(file_name) # file_name 为文件类对象或自定义词典的路径
  • 词典格式和 dict.txt 一样,一个词占一行;每一行分三部分:词语、词频(可省略)、词性(可省略),用空格隔开,顺序不可颠倒。file_name 若为路径或二进制方式打开的文件,则文件必须为 UTF-8 编码。
  • 词频省略时使用自动计算的能保证分出该词的词频。

例如:userdict.txt

创新办 3 i
云计算 5
凱特琳 nz
台中
  • 更改分词器(默认为 jieba.dt)的 tmp_dir 和 cache_file 属性,可分别指定缓存文件所在的文件夹及其文件名,用于受限的文件系统。

技术分享图片
技术分享图片
#encoding=utf-8
from __future__ import print_function, unicode_literals
import sys
sys.path.append("../")
import jieba
jieba.load_userdict("userdict.txt")#载入自定义词典:每一行包括词语、词频(可省略)、词性(可省略)
import jieba.posseg as pseg

jieba.add_word(‘石墨烯‘)
jieba.add_word(‘凱特琳‘)
jieba.del_word(‘自定义词‘)

test_sent = (
"李小福是创新办主任也是云计算方面的专家; 什么是八一双鹿
"
"例如我输入一个带“韩玉赏鉴”的标题,在自定义词库中也增加了此词为N类
"
"「台中」正確應該不會被切開。mac上可分出「石墨烯」;此時又可以分出來凱特琳了。"
)
words = jieba.cut(test_sent)#精确模式分词
print(‘/‘.join(words))
print("="*40)#输出40个=号
#李小福/是/创新办/主任/也/是/云计算/方面/的/专家/;/ /什么/是/八一双鹿/
#/例如/我/输入/一个/带/“/韩玉赏鉴/”/的/标题/,/在/自定义词/库中/也/增加/了/此/词为/N/类/
#/「/台中/」/正確/應該/不會/被/切開/。/mac/上/可/分出/「/石墨烯/」/;/此時/又/可以/分出/來/凱特琳/了/。
#========================================

result = pseg.cut(test_sent)
for w in result:
    print(w.word, "/", w.flag, ", ", end=‘ ‘)#输出词语、词性
print("
" + "="*40)
#李小福 / nr ,  是 / v ,  创新办 / i ,  主任 / b ,  也 / d ,  是 / v ,  云计算 / x ,  方面 / n ,  的 / uj ,  专家 / n ,  ; / x ,    / x ,  什么 / r ,  是 / v ,  八一双鹿 / nz ,  
# / x ,  例如 / v ,  我 / r ,  输入 / v ,  一个 / m ,  带 / v ,  “ / x ,  韩玉赏鉴 / nz ,  ” / x ,  的 / uj ,  标题 / n ,  , / x ,  在 / p ,  自定义词 / n ,  库中 / nrt ,  也 / d ,  增加 / v ,  了 / ul ,  此 / r ,  词 / n ,  为 / p ,  N / eng ,  类 / q ,  
# / x ,  「 / x ,  台中 / s ,  」 / x ,  正確 / ad ,  應該 / v ,  不 / d ,  會 / v ,  被 / p ,  切開 / ad ,  。 / x ,  mac / eng ,  上 / f ,  可 / v ,  分出 / v ,  「 / x ,  石墨烯 / x ,  」 / x ,  ; / x ,  此時 / c ,  又 / d ,  可以 / c ,  分出 / v ,  來 / zg ,  凱特琳 / nz ,  了 / ul ,  。 / x ,  
#========================================

terms = jieba.cut(‘easy_install is great‘)
print(‘/‘.join(terms))
terms = jieba.cut(‘python 的正则表达式是好用的‘)
print(‘/‘.join(terms))
print("="*40)
#easy_install/ /is/ /great
#python/ /的/正则表达式/是/好用/的
#========================================

# test frequency tune测试词语词频
testlist = [
(‘今天天气不错‘, (‘今天‘, ‘天气‘)),
(‘如果放到post中将出错。‘, (‘中‘, ‘将‘)),
(‘我们中出了一个叛徒‘, (‘中‘, ‘出‘)),
]
for sent, seg in testlist:
    print(‘/‘.join(jieba.cut(sent, HMM=False)))#精确模式,不使用HMM模型
    word = ‘‘.join(seg)
    print(‘%s Before: %s, After: %s‘ % (word, jieba.get_FREQ(word), jieba.suggest_freq(seg, True)))#suggest_freq(seg, True)调节单个词语词频
    print(‘/‘.join(jieba.cut(sent, HMM=False)))
    print("-"*40)
#今天天气/不错
#今天天气 Before: 5, After: 0
#今天天气/不错
#----------------------------------------
#如果/放到/post/中/将/出错/。
#中将 Before: 494, After: 494
#如果/放到/post/中/将/出错/。
#----------------------------------------
#我们/中/出/了/一个/叛徒
#中出 Before: 3, After: 3
#我们/中/出/了/一个/叛徒
#----------------------------------------
技术分享图片
技术分享图片

调整词典

  • 使用 add_word(word, freq=None, tag=None) 和 del_word(word) 可在程序中动态修改词典。
  • 使用 suggest_freq(segment, tune=True) 可调节单个词语的词频,使其能(或不能)被分出来。

  • 注意:自动计算的词频在使用 HMM 新词发现功能时可能无效。

代码示例:

技术分享图片
技术分享图片
>>> print(‘/‘.join(jieba.cut(‘如果放到post中将出错。‘, HMM=False)))
如果/放到/post/中将/出错/。
>>> jieba.suggest_freq((‘中‘, ‘将‘), True)
494
>>> print(‘/‘.join(jieba.cut(‘如果放到post中将出错。‘, HMM=False)))
如果/放到/post/中/将/出错/。
>>> print(‘/‘.join(jieba.cut(‘「台中」正确应该不会被切开‘, HMM=False)))
「/台/中/」/正确/应该/不会/被/切开
>>> jieba.suggest_freq(‘台中‘, True)
69
>>> print(‘/‘.join(jieba.cut(‘「台中」正确应该不会被切开‘, HMM=False)))
「/台中/」/正确/应该/不会/被/切开
技术分享图片
技术分享图片

3. 关键词提取

基于 TF-IDF 算法的关键词抽取

import jieba.analyse

  • jieba.analyse.extract_tags(sentence, topK=20, withWeight=False, allowPOS=())
    • sentence 为待提取的文本
    • topK 为返回几个 TF/IDF 权重最大的关键词,默认值为 20
    • withWeight 为是否一并返回关键词权重值,默认值为 False
    • allowPOS 仅包括指定词性的词,默认值为空,即不筛选
  • jieba.analyse.TFIDF(idf_path=None) 新建 TFIDF 实例,idf_path 为 IDF 频率文件

代码示例 (关键词提取):https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py(代码如下)

技术分享图片
技术分享图片
import sys
sys.path.append(‘../‘)

import jieba
import jieba.analyse
from optparse import OptionParser

USAGE = "usage:    python extract_tags.py [file name] -k [top k]"

parser = OptionParser(USAGE)
parser.add_option("-k", dest="topK")
opt, args = parser.parse_args()


if len(args) < 1:
    print(USAGE)
    sys.exit(1)

file_name = args[0]

if opt.topK is None:
    topK = 10
else:
    topK = int(opt.topK)

content = open(file_name, ‘rb‘).read()

tags = jieba.analyse.extract_tags(content, topK=topK)

print(",".join(tags))
技术分享图片
技术分享图片

关键词提取所使用逆向文件频率(IDF)文本语料库可以切换成自定义语料库的路径

技术分享图片
技术分享图片
import sys
sys.path.append(‘../‘)

import jieba
import jieba.analyse
from optparse import OptionParser

USAGE = "usage:    python extract_tags_idfpath.py [file name] -k [top k]"

parser = OptionParser(USAGE)
parser.add_option("-k", dest="topK")
opt, args = parser.parse_args()


if len(args) < 1:
    print(USAGE)
    sys.exit(1)

file_name = args[0]

if opt.topK is None:
    topK = 10
else:
    topK = int(opt.topK)

content = open(file_name, ‘rb‘).read()

jieba.analyse.set_idf_path("../extra_dict/idf.txt.big");#与extract_tags相比多了这一句

tags = jieba.analyse.extract_tags(content, topK=topK)

print(",".join(tags))
技术分享图片
技术分享图片

关键词提取所使用停止词(Stop Words)文本语料库可以切换成自定义语料库的路径

技术分享图片
技术分享图片
import sys
sys.path.append(‘../‘)

import jieba
import jieba.analyse
from optparse import OptionParser

USAGE = "usage:    python extract_tags_stop_words.py [file name] -k [top k]"

parser = OptionParser(USAGE)
parser.add_option("-k", dest="topK")
opt, args = parser.parse_args()


if len(args) < 1:
    print(USAGE)
    sys.exit(1)

file_name = args[0]

if opt.topK is None:
    topK = 10
else:
    topK = int(opt.topK)

content = open(file_name, ‘rb‘).read()

jieba.analyse.set_stop_words("../extra_dict/stop_words.txt")#停用词
jieba.analyse.set_idf_path("../extra_dict/idf.txt.big");#idf词频

tags = jieba.analyse.extract_tags(content, topK=topK)

print(",".join(tags))
技术分享图片
技术分享图片

关键词一并返回关键词权重值示例

技术分享图片
技术分享图片
import sys
sys.path.append(‘../‘)

import jieba
import jieba.analyse
from optparse import OptionParser

USAGE = "usage:    python extract_tags_with_weight.py [file name] -k [top k] -w [with weight=1 or 0]"

parser = OptionParser(USAGE)
parser.add_option("-k", dest="topK")
parser.add_option("-w", dest="withWeight")
opt, args = parser.parse_args()


if len(args) < 1:
    print(USAGE)
    sys.exit(1)

file_name = args[0]

if opt.topK is None:
    topK = 10
else:
    topK = int(opt.topK)

if opt.withWeight is None:
    withWeight = False
else:
    if int(opt.withWeight) is 1:
        withWeight = True
    else:
        withWeight = False

content = open(file_name, ‘rb‘).read()

tags = jieba.analyse.extract_tags(content, topK=topK, withWeight=withWeight)

if withWeight is True:
    for tag in tags:
        print("tag: %s		 weight: %f" % (tag[0],tag[1]))
else:
    print(",".join(tags))
技术分享图片
技术分享图片

4. 词性标注

  • jieba.posseg.POSTokenizer(tokenizer=None) 新建自定义分词器,tokenizer 参数可指定内部使用的jieba.Tokenizer 分词器。jieba.posseg.dt 为默认词性标注分词器。
  • 标注句子分词后每个词的词性,采用和 ictclas 兼容的标记法。
  • 用法示例
技术分享图片
技术分享图片
>>> import jieba.posseg as pseg
>>> words = pseg.cut("我爱北京天安门")
>>> for word, flag in words:
...    print(‘%s %s‘ % (word, flag))
...
我 r
爱 v
北京 ns
天安门 ns
技术分享图片
技术分享图片

5. 并行分词

  • 原理:将目标文本按行分隔后,把各行文本分配到多个 Python 进程并行分词,然后归并结果,从而获得分词速度的可观提升
  • 基于 python 自带的 multiprocessing 模块,目前暂不支持 Windows
  • 用法:

    • jieba.enable_parallel(4) # 开启并行分词模式,参数为并行进程数
    • jieba.disable_parallel() # 关闭并行分词模式
  • 例子:https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py(代码如下)

  • 技术分享图片
    技术分享图片
    import sys
    import time
    sys.path.append("../../")
    import jieba
    
    jieba.enable_parallel()
    
    url = sys.argv[1]
    content = open(url,"rb").read()
    t1 = time.time()
    words = "/ ".join(jieba.cut(content))
    
    t2 = time.time()
    tm_cost = t2-t1
    
    log_f = open("1.log","wb")
    log_f.write(words.encode(‘utf-8‘))
    
    print(‘speed %s bytes/second‘ % (len(content)/tm_cost))
    技术分享图片
    技术分享图片
  • 实验结果:在 4 核 3.4GHz Linux 机器上,对金庸全集进行精确分词,获得了 1MB/s 的速度,是单进程版的 3.3 倍。

  • 注意:并行分词仅支持默认分词器 jieba.dt 和 jieba.posseg.dt

6. Tokenize:返回词语在原文的起止位置

  • 注意,输入参数只接受 unicode
  • 精确模式
result = jieba.tokenize(u‘永和服装饰品有限公司‘)
for tk in result:
    print("word %s		 start: %d 		 end:%d" % (tk[0],tk[1],tk[2]))
word 永和                start: 0                end:2
word 服装                start: 2                end:4
word 饰品                start: 4                end:6
word 有限公司            start: 6                end:10
  • 搜索模式
result = jieba.tokenize(u‘永和服装饰品有限公司‘, mode=‘search‘)
for tk in result:
    print("word %s		 start: %d 		 end:%d" % (tk[0],tk[1],tk[2]))
word 永和                start: 0                end:2
word 服装                start: 2                end:4
word 饰品                start: 4                end:6
word 有限                start: 6                end:8
word 公司                start: 8                end:10
word 有限公司            start: 6                end:10

7. ChineseAnalyzer for Whoosh 搜索引擎

8. 命令行分词

使用示例:python -m jieba news.txt > cut_result.txt





以上是关于结巴分词详细讲解的主要内容,如果未能解决你的问题,请参考以下文章

结巴分词--基于前缀词典及动态规划实现分词

NLP 结巴分词词性代码

NLP 结巴分词词性代码

结巴分词获取关键词时怎么过滤掉一些停用词

结巴分词和自然语言处理HanLP处理手记

结巴分词