[R] 回归拟合
Posted 萧飞IDO
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[R] 回归拟合相关的知识,希望对你有一定的参考价值。
如下示例
> fit <- lm(y~x, data = data01) > summary(fit) Call: lm(formula = data01$P ~ data01$M, data = data01) Residuals: Min 1Q Median 3Q Max -4.2070 -2.9109 -0.9089 2.9160 8.8993 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 6.340e+00 7.472e-01 8.485 4.26e-09 *** x 1.305e-04 2.657e-05 4.911 3.87e-05 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 3.575 on 27 degrees of freedom Multiple R-squared: 0.4718, Adjusted R-squared: 0.4522 F-statistic: 24.11 on 1 and 27 DF, p-value: 3.872e-05
Coefficients:
依次四个值是:
Estimate Std. Error t value Pr(>|t|)
估值,标准误差,T值,P值
其 中,我们可以直接通过P值与我们预设的0.05进行比较,来判定对应的解释变量的显著性(我们检验的原假设是,该系数是否显著为0,P<0.05则 拒绝原假设,即对应的变量显著不为0),我们可以看到截距项Intercept和X都可以认为是在P为0.05的水平下显著不为0,通过显著性检验
拟合优度R^2
我们看Multiple R-squared和Adjusted R-squared这两个值,其实我们常称之为“拟合优度”和“修正的拟合优度”,是指回归方程对样本的拟合程度几何,这里我们可以看到,修正的拟合优 度=0.4522,也就是大概拟合程度不到五成,表示拟合程度很一般。这个值当然是越高越好,当然,提升拟合优度的方法很多,当达到某个程度,我们也就认 为差不多了。具体还有很复杂的判定内容,有兴趣的可以看看:http://baike.baidu.com/view/657906.htm
F-statistic
我们常说的F统计量(F检验),常常用于判断方程整体的显著性检验,其P值为3.872e-05,显然是<0.05的,我们可以认为方程在P=0.05的水平上还是通过显著性检验的。
总结:
T检验是检验解释变量的显著性的;
R-squared是查看方程拟合程度的;
F检验是检验方程整体显著性的;
以上是关于[R] 回归拟合的主要内容,如果未能解决你的问题,请参考以下文章
R语言使用lm函数拟合回归模型(简单线性回归一元回归simple regression)并解读拟合模型
R语言使用lm函数拟合回归模型(简单线性回归一元回归)并诊断模型(Regression diagnostics)使用plot函数打印回归模型的Q-Q图残差拟合图标度-位置图残差与杠杆关系图
R语言glm拟合logistic回归模型:模型评估(计算模型拟合的统计显著性)模型评估(赤信息AIC指标计算)
R语言glm函数拟合回归模型时其它常用的函数(summarycoefficientsconfintfittedresidualsanovaplotpredictdeviance等)