kafka producer源码
Posted 大数据从业者
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了kafka producer源码相关的知识,希望对你有一定的参考价值。
producer接口:
/** * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.kafka.clients.producer; import java.io.Closeable; import java.util.List; import java.util.Map; import java.util.concurrent.Future; import java.util.concurrent.TimeUnit; import org.apache.kafka.common.Metric; import org.apache.kafka.common.PartitionInfo; import org.apache.kafka.common.MetricName; /** * The interface for the {@link KafkaProducer} * @see KafkaProducer * @see MockProducer */ public interface Producer<K, V> extends Closeable { /** * Send the given record asynchronously and return a future which will eventually contain the response information. * * @param record The record to send * @return A future which will eventually contain the response information */ public Future<RecordMetadata> send(ProducerRecord<K, V> record); /** * Send a record and invoke the given callback when the record has been acknowledged by the server */ public Future<RecordMetadata> send(ProducerRecord<K, V> record, Callback callback); /** * Flush any accumulated records from the producer. Blocks until all sends are complete. */ public void flush(); /** * Get a list of partitions for the given topic for custom partition assignment. The partition metadata will change * over time so this list should not be cached. */ public List<PartitionInfo> partitionsFor(String topic); /** * Return a map of metrics maintained by the producer */ public Map<MetricName, ? extends Metric> metrics(); /** * Close this producer */ public void close(); /** * Tries to close the producer cleanly within the specified timeout. If the close does not complete within the * timeout, fail any pending send requests and force close the producer. */ public void close(long timeout, TimeUnit unit); }
producer接口由两个实现类KafkaProducer、MockProducer
KafkaProducer类:
/** * Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE * file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file * to You under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the * License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on * an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the * specific language governing permissions and limitations under the License. */ package org.apache.kafka.clients.producer; import java.net.InetSocketAddress; import java.util.Collections; import java.util.LinkedHashMap; import java.util.List; import java.util.Map; import java.util.Properties; import java.util.concurrent.ExecutionException; import java.util.concurrent.Future; import java.util.concurrent.TimeUnit; import java.util.concurrent.atomic.AtomicInteger; import java.util.concurrent.atomic.AtomicReference; import org.apache.kafka.clients.ClientUtils; import org.apache.kafka.clients.Metadata; import org.apache.kafka.clients.NetworkClient; import org.apache.kafka.clients.producer.internals.RecordAccumulator; import org.apache.kafka.clients.producer.internals.Sender; import org.apache.kafka.clients.producer.internals.ProducerInterceptors; import org.apache.kafka.common.Cluster; import org.apache.kafka.common.KafkaException; import org.apache.kafka.common.Metric; import org.apache.kafka.common.PartitionInfo; import org.apache.kafka.common.TopicPartition; import org.apache.kafka.common.config.ConfigException; import org.apache.kafka.common.errors.ApiException; import org.apache.kafka.common.errors.InterruptException; import org.apache.kafka.common.errors.RecordTooLargeException; import org.apache.kafka.common.errors.SerializationException; import org.apache.kafka.common.errors.TimeoutException; import org.apache.kafka.common.errors.TopicAuthorizationException; import org.apache.kafka.common.metrics.JmxReporter; import org.apache.kafka.common.metrics.MetricConfig; import org.apache.kafka.common.MetricName; import org.apache.kafka.common.metrics.Metrics; import org.apache.kafka.common.metrics.MetricsReporter; import org.apache.kafka.common.metrics.Sensor; import org.apache.kafka.common.network.Selector; import org.apache.kafka.common.network.ChannelBuilder; import org.apache.kafka.common.record.CompressionType; import org.apache.kafka.common.record.Record; import org.apache.kafka.common.record.Records; import org.apache.kafka.common.serialization.Serializer; import org.apache.kafka.common.utils.AppInfoParser; import org.apache.kafka.common.utils.KafkaThread; import org.apache.kafka.common.utils.SystemTime; import org.apache.kafka.common.utils.Time; import org.slf4j.Logger; import org.slf4j.LoggerFactory; /** * A Kafka client that publishes records to the Kafka cluster. * <P> * The producer is <i>thread safe</i> and sharing a single producer instance across threads will generally be faster than * having multiple instances. * <p> * Here is a simple example of using the producer to send records with strings containing sequential numbers as the key/value * pairs. * <pre> * {@code * Properties props = new Properties(); * props.put("bootstrap.servers", "localhost:9092"); * props.put("acks", "all"); * props.put("retries", 0); * props.put("batch.size", 16384); * props.put("linger.ms", 1); * props.put("buffer.memory", 33554432); * props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer"); * props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); * * Producer<String, String> producer = new KafkaProducer<>(props); * for(int i = 0; i < 100; i++) * producer.send(new ProducerRecord<String, String>("my-topic", Integer.toString(i), Integer.toString(i))); * * producer.close(); * }</pre> * <p> * The producer consists of a pool of buffer space that holds records that haven\'t yet been transmitted to the server * as well as a background I/O thread that is responsible for turning these records into requests and transmitting them * to the cluster. Failure to close the producer after use will leak these resources. * <p> * The {@link #send(ProducerRecord) send()} method is asynchronous. When called it adds the record to a buffer of pending record sends * and immediately returns. This allows the producer to batch together individual records for efficiency. * <p> * The <code>acks</code> config controls the criteria under which requests are considered complete. The "all" setting * we have specified will result in blocking on the full commit of the record, the slowest but most durable setting. * <p> * If the request fails, the producer can automatically retry, though since we have specified <code>retries</code> * as 0 it won\'t. Enabling retries also opens up the possibility of duplicates (see the documentation on * <a href="http://kafka.apache.org/documentation.html#semantics">message delivery semantics</a> for details). * <p> * The producer maintains buffers of unsent records for each partition. These buffers are of a size specified by * the <code>batch.size</code> config. Making this larger can result in more batching, but requires more memory (since we will * generally have one of these buffers for each active partition). * <p> * By default a buffer is available to send immediately even if there is additional unused space in the buffer. However if you * want to reduce the number of requests you can set <code>linger.ms</code> to something greater than 0. This will * instruct the producer to wait up to that number of milliseconds before sending a request in hope that more records will * arrive to fill up the same batch. This is analogous to Nagle\'s algorithm in TCP. For example, in the code snippet above, * likely all 100 records would be sent in a single request since we set our linger time to 1 millisecond. However this setting * would add 1 millisecond of latency to our request waiting for more records to arrive if we didn\'t fill up the buffer. Note that * records that arrive close together in time will generally batch together even with <code>linger.ms=0</code> so under heavy load * batching will occur regardless of the linger configuration; however setting this to something larger than 0 can lead to fewer, more * efficient requests when not under maximal load at the cost of a small amount of latency. * <p> * The <code>buffer.memory</code> controls the total amount of memory available to the producer for buffering. If records * are sent faster than they can be transmitted to the server then this buffer space will be exhausted. When the buffer space is * exhausted additional send calls will block. The threshold for time to block is determined by <code>max.block.ms</code> after which it throws * a TimeoutException. * <p> * The <code>key.serializer</code> and <code>value.serializer</code> instruct how to turn the key and value objects the user provides with * their <code>ProducerRecord</code> into bytes. You can use the included {@link org.apache.kafka.common.serialization.ByteArraySerializer} or * {@link org.apache.kafka.common.serialization.StringSerializer} for simple string or byte types. */ public class KafkaProducer<K, V> implements Producer<K, V> { private static final Logger log = LoggerFactory.getLogger(KafkaProducer.class); private static final AtomicInteger PRODUCER_CLIENT_ID_SEQUENCE = new AtomicInteger(1); private static final String JMX_PREFIX = "kafka.producer"; private String clientId; private final Partitioner partitioner; private final int maxRequestSize; private final long totalMemorySize; private final Metadata metadata; private final RecordAccumulator accumulator; private final Sender sender; private final Metrics metrics; private final Thread ioThread; private final CompressionType compressionType; private final Sensor errors; private final Time time; private final Serializer<K> keySerializer; private final Serializer<V> valueSerializer; private final ProducerConfig producerConfig; private final long maxBlockTimeMs; private final int requestTimeoutMs; private final ProducerInterceptors<K, V> interceptors; /** * A producer is instantiated by providing a set of key-value pairs as configuration. Valid configuration strings * are documented <a href="http://kafka.apache.org/documentation.html#producerconfigs">here</a>. Values can be * either strings or Objects of the appropriate type (for example a numeric configuration would accept either the * string "42" or the integer 42). * @param configs The producer configs * */ public KafkaProducer(Map<String, Object> configs) { this(new ProducerConfig(configs), null, null); } /** * A producer is instantiated by providing a set of key-value pairs as configuration, a key and a value {@link Serializer}. * Valid configuration strings are documented <a href="http://kafka.apache.org/documentation.html#producerconfigs">here</a>. * Values can be either strings or Objects of the appropriate type (for example a numeric configuration would accept * either the string "42" or the integer 42). * @param configs The producer configs * @param keySerializer The serializer for key that implements {@link Serializer}. The configure() method won\'t be * called in the producer when the serializer is passed in directly. * @param valueSerializer The serializer for value that implements {@link Serializer}. The configure() method won\'t * be called in the producer when the serializer is passed in directly. */ public KafkaProducer(Map<String, Object> configs, Serializer<K> keySerializer, Serializer<V> valueSerializer) { this(new ProducerConfig(ProducerConfig.addSerializerToConfig(configs, keySerializer, valueSerializer)), keySerializer, valueSerializer); } /** * A producer is instantiated by providing a set of key-value pairs as configuration. Valid configuration strings * are documented <a href="http://kafka.apache.org/documentation.html#producerconfigs">here</a>. * @param properties The producer configs */ public KafkaProducer(Properties properties) { this(new ProducerConfig(properties), null, null); } /** * A producer is instantiated by providing a set of key-value pairs as configuration, a key and a value {@link Serializer}. * Valid configuration strings are documented <a href="http://kafka.apache.org/documentation.html#producerconfigs">here</a>. * @param properties The producer configs * @param keySerializer The serializer for key that implements {@link Serializer}. The configure() method won\'t be * called in the producer when the serializer is passed in directly. * @param valueSerializer The serializer for value that implements {@link Serializer}. The configure() method won\'t * be called in the producer when the serializer is passed in directly. */ public KafkaProducer(Properties properties, Serializer<K> keySerializer, Serializer<V> valueSerializer) { this(new ProducerConfig(ProducerConfig.addSerializerToConfig(properties, keySerializer, valueSerializer)), keySerializer, valueSerializer); } @SuppressWarnings({"unchecked", "deprecation"}) private KafkaProducer(ProducerConfig config, Serializer<K> keySerializer, Serializer<V> valueSerializer) { try { log.trace("Starting the Kafka producer"); Map<String, Object> userProvidedConfigs = config.originals(); this.producerConfig = config; this.time = new SystemTime(); clientId = config.getString(ProducerConfig.CLIENT_ID_CONFIG); if (clientId.length() <= 0) clientId = "producer-" + PRODUCER_CLIENT_ID_SEQUENCE.getAndIncrement(); Map<String, String> metricTags = new LinkedHashMap<String, String>(); metricTags.put("client-id", clientId); MetricConfig metricConfig = new MetricConfig().samples(config.getInt(ProducerConfig.METRICS_NUM_SAMPLES_CONFIG)) .timeWindow(config.getLong(ProducerConfig.METRICS_SAMPLE_WINDOW_MS_CONFIG), TimeUnit.MILLISECONDS) .tags(metricTags); List<MetricsReporter> reporters = config.getConfiguredInstances(ProducerConfig.METRIC_REPORTER_CLASSES_CONFIG, MetricsReporter.class); reporters.add(new JmxReporter(JMX_PREFIX)); this.metrics = new Metrics(metricConfig, reporters, time); this.partitioner = config.getConfiguredInstance(ProducerConfig.PARTITIONER_CLASS_CONFIG, Partitioner.class); long retryBackoffMs = config.getLong(ProducerConfig.RETRY_BACKOFF_MS_CONFIG); this.metadata = new Metadata(retryBackoffMs, config.getLong(ProducerConfig.METADATA_MAX_AGE_CONFIG)); this.maxRequestSize = config.getInt(ProducerConfig.MAX_REQUEST_SIZE_CONFIG); this.totalMemorySize = config.getLong(ProducerConfig.BUFFER_MEMORY_CONFIG); this.compressionType = CompressionType.forName(config.getString(ProducerConfig.COMPRESSION_TYPE_CONFIG)); /* check for user defined settings. * If the BLOCK_ON_BUFFER_FULL is set to true,we do not honor METADATA_FETCH_TIMEOUT_CONFIG. * This should be removed with release 0.9 when the deprecated configs are removed. */ if (userProvidedConfigs.containsKey(ProducerConfig.BLOCK_ON_BUFFER_FULL_CONFIG)) { log.warn(ProducerConfig.BLOCK_ON_BUFFER_FULL_CONFIG + " config is deprecated and will be removed soon. " + "Please use " + ProducerConfig.MAX_BLOCK_MS_CONFIG); boolean blockOnBufferFull = config.getBoolean(ProducerConfig.BLOCK_ON_BUFFER_FULL_CONFIG); if (blockOnBufferFull) { this.maxBlockTimeMs = Long.MAX_VALUE; } else if (userProvidedConfigs.containsKey(ProducerConfig.METADATA_FETCH_TIMEOUT_CONFIG)) { log.warn(ProducerConfig.METADATA_FETCH_TIMEOUT_CONFIG + " config is deprecated and will be removed soon. " + "Please use " + ProducerConfig.MAX_BLOCK_MS_CONFIG); this.maxBlockTimeMs = config.getLong(ProducerConfig.METADATA_FETCH_TIMEOUT_CONFIG); } else { this.maxBlockTimeMs = config.getLong(ProducerConfig.MAX_BLOCK_MS_CONFIG); } } else if (userProvidedConfigs.containsKey(ProducerConfig.METADATA_FETCH_TIMEOUT_CONFIG)) { log.warn(ProducerConfig.METADATA_FETCH_TIMEOUT_CONFIG + " config is deprecated and will be removed soon. " + "Please use " + ProducerConfig.MAX_BLOCK_MS_CONFIG); this.maxBlockTimeMs = config.getLong(ProducerConfig.METADATA_FETCH_TIMEOUT_CONFIG); } else { this.maxBlockTimeMs = config.getLong(ProducerConfig.MAX_BLOCK_MS_CONFIG); } /* check for user defined settings. * If the TIME_OUT config is set use that for request timeout. * This should be removed with release 0.9 */ if (userProvidedConfigs.containsKey(ProducerConfig.TIMEOUT_CONFIG)) { log.warn(ProducerConfig.TIMEOUT_CONFIG + " config is deprecated and will be removed soon. Please use " + ProducerConfig.REQUEST_TIMEOUT_MS_CONFIG); this.requestTimeoutMs = config.getInt(ProducerConfig.TIMEOUT_CONFIG); } else { this.requestTimeoutMs = config.getInt(ProducerConfig.REQUEST_TIMEOUT_MS_CONFIG); } this.accumulator = new RecordAccumulator(config.getInt(ProducerConfig.BATCH_SIZE_CONFIG), this.totalMemorySize, this.compressionType, config.getLong(ProducerConfig.LINGER_MS_CONFIG), retryBackoffMs, metrics, time); List<InetSocketAddress> addresses = ClientUtils.parseAndValidateAddresses(config.getList(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG)); this.metadata.update(Cluster.bootstrap(addresses), time.milliseconds()); ChannelBuilder channelBuilder = ClientUtils.createChannelBuilder(config.values()); NetworkClient client = new NetworkClient( new Selector(config.getLong(ProducerConfig.CONNECTIONS_MAX_IDLE_MS_CONFIG), this.metrics, time, "producer", channelBuilder), this.metadata, clientId, config.getInt(ProducerConfig.MAX_IN_FLIGHT_REQUESTS_PER_CONNECTION), config.getLong(ProducerConfig.RECONNECT_BACKOFF_MS_CONFIG), config.getInt(ProducerConfig.SEND_BUFFER_CONFIG), config.getInt(ProducerConfig.RECEIVE_BUFFER_CONFIG), this.requestTimeoutMs, time); this.sender = new Sender(client, this.metadata, this.accumulator, config.getInt(ProducerConfig.MAX_IN_FLIGHT_REQUESTS_PER_CONNECTION) == 1, config.getInt(ProducerConfig.MAX_REQUEST_SIZE_CONFIG), (short) parseAcks(config.getString(ProducerConfig.ACKS_CONFIG)), config.getInt(ProducerConfig.RETRIES_CONFIG), this.metrics, new SystemTime(), clientId, this.requestTimeoutMs); String ioThreadName = "kafka-producer-network-thread" + (clientId.length() > 0 ? " | " + clientId : ""); this.ioThread = new KafkaThread(ioThreadName, this.sender, true); this.ioThread.start(); this.errors = this.metrics.sensor("errors"); if (keySerializer == null) { this.keySerializer = config.getConfiguredInstance(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, Serializer.class); this.keySerializer.configure(config.originals(), true); } else { config.ignore(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG); this.keySerializer = keySerializer; } if (valueSerializer == null) { this.valueSerializer = config.getConfiguredInstance(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, Serializer.class); this.valueSerializer.configure(config.originals(), false); } else { config.ignore(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG); this.valueSerializer = valueSerializer; } // load interceptors and make sure they get clientId userProvidedConfigs.put(ProducerConfig.CLIENT_ID_CONFIG, clientId); List<ProducerInterceptor<K, V>> interceptorList = (List) (new ProducerConfig(userProvidedConfigs)).getConfiguredInstances(ProducerConfig.INTERCEPTOR_CLASSES_CONFIG, ProducerInterceptor.class); this.interceptors = interceptorList.isEmpty() ? null : new ProducerInterceptors<>(interceptorList); config.logUnused(); AppInfoParser.registerAppInfo(JMX_PREFIX, clientId); log.debug("Kafka producer started"); } catch (Throwable t) { // call close methods if internal objects are already constructed // this is to prevent resource leak. see KAFKA-2121 close(0, TimeUnit.MILLISECONDS, true); // now propagate the exception throw new KafkaException("Failed to construct kafka producer", t); } } private static int parseAcks(String acksString) { try { return acksString.trim().equalsIgnoreCase("all") ? -1 : Integer.parseInt(acksString.trim()); } catch (NumberFormatException e) { throw new ConfigException("Invalid configuration value for \'acks\': " + acksString); } } /** * Asynchronously send a record to a topic. Equivalent to <code>send(record, null)</code>. * See {@link #send(ProducerRecord, Callback)} for details. */ @Override public Future<RecordMetadata> send(ProducerRecord<K, V> record) { return send(record, null); } /** * Asynchronously send a record to a topic and invoke the provided callback when the send has been acknowledged. * <p> * The send is asynchronous and this method will return immediately once the record has been stored in the buffer of * records waiting to be sent. This allows sending many records in parallel without blocking to wait for the * response after each one. * <p> * The result of the send is a {@link RecordMetadata} specifying the partition the record was sent to, the offset * it was assigned and the timestamp of the record. If * {@link org.apache.kafka.common.record.TimestampType#CREATE_TIME CreateTime} is used by the topic, the timestamp * will be the user provided timestamp or the record send time if the user did not specify a timestamp for the * record. If {@link org.apache.kafka.common.record.TimestampType#LOG_APPEND_TIME LogAppendTime} is used for the * topic, the timestamp will be the Kafka broker local time when the message is appended. * <p> * Since the send call is asynchronous it returns a {@link java.util.concurrent.Future Future} for the * {@link RecordMetadata} that will be assigned to this record. Invoking {@link java.util.concurrent.Future#get() * get()} on this future will block until the associated request completes and then return the metadata for the record * or throw any exception that occurred while sending the record. * <p> * If you want to simulate a simple blocking call you can call the <code>get()</code> method immediately: * * <pre> * {@code * byte[] key = "key".getBytes(); * byte[] value = "value".getBytes(); * ProducerRecord<byte[],byte[]> record = new ProducerRecord<byte[],byte[]>("my-topic", key, value) * producer.send(record).get(); * }</pre> * <p> * Fully non-blocking usage can make use of the {@link Callback} parameter to provide a callback that * will be invoked when the request is complete. * * <pre> * {@code * ProducerRecord<byte[],byte[]> record = new ProducerRecord<byte[],byte[]>("the-topic", key, value); * producer.send(myRecord, * new Callback() { * public void onCompletion(RecordMetadata metadata, Exception e) { * if(e != null) * e.printStackTrace(); * System.out.println("The offset of the record we just sent is: " + metadata.offset()); * } * }); * } * </pre> * * Callbacks for records being sent to the same partition are guaranteed to execute in order. That is, in the * following example <code>callback1</code> is guaranteed to execute before <code>callback2</code>: * * <pre> * {@code * producer.send(new ProducerRecord<byte[],byte[]>(topic, partition, key1, value1), callback1); * producer.send(new ProducerRecord<byte[],byte[]>(topic, partition, key2, value2), callback2); * } * </pre> * <p> * Note that callbacks will generally execute in the I/O thread of the producer and so should be reasonably fast or * they will delay the sending of messages from other threads. If you want to execute blocking or computationally * expensive callbacks it is recommended to use your own {@link java.util.concurrent.Executor} in the callback body * to parallelize processing. * * @param record The record to send * @param callback A user-supplied callback to execute when the record has been acknowledged by the server (null * indicates no callback) * * @throws InterruptException If the thread is interrupted while blocked * @throws SerializationException If the key or value are not valid objects given the configured serializers * @throws TimeoutException if the time taken for fetching metadata or allocating memory for the record has surpassed <code>max.block.ms</code>. * */ @Override public Future<RecordMetadata> send(ProducerRecord<K, V> record, Callback callback) { // intercept the record, which can be potentially modified; this method does not throw exceptions ProducerRecord<K, V> interceptedRecord = this.interceptors == null ? record : this.interceptors.onSend(record); return doSend(interceptedRecord, callback); } /** * Implementation of asynchronously send a record to a topic. Equivalent to <code>send(record, null)</code>. * See {@link #send(ProducerRecord, Callback)} for details. */ private Future<RecordMetadata> doSend(ProducerRecord<K, V> record, Callback callback) { TopicPartition tp = null; try { // first make sure the metadata for the topic is available long waitedOnMetadataMs = waitOnMetadata(record.topic(), this.maxBlockTimeMs); long remainingWaitMs = Math.max(0, this.maxBlockTimeMs - waitedOnMetadataMs); byte[] serializedKey; try { serializedKey = keySerializer.serialize(record.topic(), record.key()); } catch (ClassCastException cce) { throw new SerializationException("Can\'t convert key of class " + record.key().getClass().getName() + " to class " + producerConfig.getClass(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG).getName() + " specified in key.serializer"); } byte[] serializedValue; try { serializedValue = valueSerializer.serialize(record.topic(), record.value()); } catch (ClassCastException cce) { throw new SerializationException("Can\'t convert value of class " + record.value().getClass().getName() + " to class " + producerConfig.getClass(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG).getName() + " specified in value.serializer"); } int partition = partition(record, serializedKey, serializedValue, metadata.fetch()); int serializedSize = Records.LOG_OVERHEAD + Record.recordSize(serializedKey, serializedValue); ensureValidRecordSize(serializedSize); tp = new TopicPartition(record.topic(), partition); long timestamp = record.timestamp() == null ? time.milliseconds() : record.timestamp(); log.trace("Sending record {} with callback {} to topic {} partition {}", record, callback, record.topic(), partition); // producer callback will make sure to call both \'callback\' and interceptor callback Callback interceptCallback = this.interceptors == null ? callback : new InterceptorCallback<>(callback, this.interceptors, tp); RecordAccumulator.RecordAppendResult result = accumulator.append(tp, timestamp, serializedKey, serializedValue, interceptCallback, remainingWaitMs); if (result.batchIsFull || result.newBatchCreated) { log.trace("Waking up the sender since topic {} partition {} is either full or getting a new batch", record.topic(), partition); this.sender.wakeup(); } return result.future; // handling exceptions and record the errors; // for API exceptions return them in the future, // for other exceptions throw directly } catch (ApiException e) { log.debug("Exception occurred during message send:", e); if (callback != null) callback.onCompletion(null, e); this.errors.record(); if (this.interceptors != null) this.interceptors.onSendError(record, tp, e); return new FutureFailure(e); } catch以上是关于kafka producer源码的主要内容,如果未能解决你的问题,请参考以下文章