图割opencv中构建图和最大流/最小割的源码解读
Posted ZealCV
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了图割opencv中构建图和最大流/最小割的源码解读相关的知识,希望对你有一定的参考价值。
#include <vector> using namespace std; #define MIN(a,b) (((a)<(b))?(a):(b)) typedef unsigned char uchar; template <class TWeight> class GCGraph { public: GCGraph(); GCGraph(unsigned int vtxCount, unsigned int edgeCount); ~GCGraph(); void create(unsigned int vtxCount, unsigned int edgeCount); int addVtx(); void addEdges(int i, int j, TWeight w, TWeight revw); void addTermWeights(int i, TWeight sourceW, TWeight sinkW); TWeight maxFlow(); bool inSourceSegment(int i); private: class Vtx //结点类 { public: Vtx *next; //只在maxflow算法中用于构建先进-先出队列 int parent; int first; //首个相邻边 int ts; //时间戳 int dist; //到树根的距离 TWeight weight; uchar t; //图中结点的标签,取值0或1,0为源节点(前景点),1为汇节点(背景点) }; class Edge { public: int dst; //边指向的结点 int next; //该边的顶点的下一条边 TWeight weight; //边的权重 }; std::vector<Vtx> vtcs; //存放所有的结点 std::vector<Edge> edges; //存放所有的边 TWeight flow; //图的流量 }; template <class TWeight> GCGraph<TWeight>::GCGraph() { flow = 0; } template <class TWeight> GCGraph<TWeight>::GCGraph(unsigned int vtxCount, unsigned int edgeCount) { create(vtxCount, edgeCount); } template <class TWeight> GCGraph<TWeight>::~GCGraph() { } template <class TWeight> void GCGraph<TWeight>::create(unsigned int vtxCount, unsigned int edgeCount) { vtcs.reserve(vtxCount); edges.reserve(edgeCount + 2); flow = 0; } /* 函数功能:添加一个空结点,所有成员初始化为空 参数说明:无 返回值:当前结点在集合中的编号 */ template <class TWeight> int GCGraph<TWeight>::addVtx() { Vtx v; memset(&v, 0, sizeof(Vtx)); //将结点申请到的内存空间全部清0(第二个参数0) vtcs.push_back(v); return (int)vtcs.size() - 1; //返回值:当前结点在集合中的编号 } /* 函数功能:添加一条结点i和结点j之间的边n-link(普通结点之间的边) 参数说明: int---i: 弧头结点编号 int---j: 弧尾结点编号 Tweight---w: 正向弧权值 Tweight---reww: 逆向弧权值 返回值:无 */ template <class TWeight> void GCGraph<TWeight>::addEdges(int i, int j, TWeight w, TWeight revw) { assert(i >= 0 && i < (int)vtcs.size()); assert(j >= 0 && j < (int)vtcs.size()); assert(w >= 0 && revw >= 0); assert(i != j); Edge fromI, toI; // 正向弧:fromI, 反向弧 toI fromI.dst = j; // 正向弧指向结点j fromI.next = vtcs[i].first; //每个结点所发出的全部n-link弧(4个方向)都会被连接为一个链表,采用头插法插入所有的弧 fromI.weight = w; // 正向弧的权值w vtcs[i].first = (int)edges.size(); //修改结点i的第一个弧为当前正向弧 edges.push_back(fromI); //正向弧加入弧集合 toI.dst = i; toI.next = vtcs[j].first; toI.weight = revw; vtcs[j].first = (int)edges.size(); edges.push_back(toI); } /* 函数功能: 为结点i的添加一条t-link弧(到终端结点的弧),添加节点的时候,同时调用此函数 参数说明: int---i: 结点编号 Tweight---sourceW: 正向弧权值 Tweight---sinkW: 逆向弧权值 */ template <class TWeight> void GCGraph<TWeight>::addTermWeights(int i, TWeight sourceW, TWeight sinkW) { assert(i >= 0 && i < (int)vtcs.size()); TWeight dw = vtcs[i].weight; if (dw > 0) sourceW += dw; else sinkW -= dw; flow += (sourceW < sinkW) ? sourceW : sinkW; vtcs[i].weight = sourceW - sinkW; } template <class TWeight> TWeight GCGraph<TWeight>::maxFlow() { const int TERMINAL = -1, ORPHAN = -2; Vtx stub, *nilNode = &stub, *first = nilNode, *last = nilNode;//先进先出队列,保存当前活动结点,stub为哨兵结点 int curr_ts = 0; //当前时间戳 stub.next = nilNode; //初始化活动结点队列,首结点指向自己 Vtx *vtxPtr = &vtcs[0]; //结点指针 Edge *edgePtr = &edges[0]; //弧指针 vector<Vtx*> orphans; //孤立点集合 // 遍历所有的结点,初始化活动结点(active node)队列 for (int i = 0; i < (int)vtcs.size(); i++) { Vtx* v = vtxPtr + i; v->ts = 0; if (v->weight != 0) //当前结点t-vaule(即流量)不为0 { last = last->next = v; //入队,插入到队尾 v->dist = 1; //路径长度记1 v->parent = TERMINAL; //标注其双亲为终端结点 v->t = v->weight < 0; } else v->parent = 0; //孤结点 } first = first->next; //首结点作为哨兵使用,本身无实际意义,移动到下一节点,即第一个有效结点 last->next = nilNode; //哨兵放置到队尾了。。。检测到哨兵说明一层查找结束 nilNode->next = 0; //很长的循环,每次都按照以下三个步骤运行: //搜索路径->拆分为森林->树的重构 for (;;) { Vtx* v, *u; // v表示当前元素,u为其相邻元素 int e0 = -1, ei = 0, ej = 0; TWeight minWeight, weight; // 路径最小割(流量), weight当前流量 uchar vt; // 流向标识符,正向为0,反向为1 //===================================================// // 第一阶段: S 和 T 树的生长,找到一条s->t的路径 while (first != nilNode) { v = first; // 取第一个元素存入v,作为当前结点 if (v->parent) // v非孤儿点 { vt = v->t; // 纪录v的流向 // 广度优先搜索,以此搜索当前结点所有相邻结点, 方法为:遍历所有相邻边,调出边的终点就是相邻结点 for (ei = v->first; ei != 0; ei = edgePtr[ei].next) { // 每对结点都拥有两个反向的边,ei^vt表明检测的边是与v结点同向的 if (edgePtr[ei^vt].weight == 0) continue; u = vtxPtr + edgePtr[ei].dst; // 取出邻接点u if (!u->parent) // 无父节点,即为孤儿点,v接受u作为其子节点 { u->t = vt; // 设置结点u与v的流向相同 u->parent = ei ^ 1; // ei的末尾取反。。。 u->ts = v->ts; // 更新时间戳,由于u的路径长度通过v计算得到,因此有效性相同 u->dist = v->dist + 1; // u深度等于v加1 if (!u->next) // u不在队列中,入队,插入位置为队尾 { u->next = nilNode; // 修改下一元素指针指向哨兵 last = last->next = u; // 插入队尾 } continue; } if (u->t != vt) // u和v的流向不同,u可以到达另一终点,则找到一条路径 { e0 = ei ^ vt; break; } // u已经存在父节点,但是如果u的路径长度大于v+1,且u的时间戳较早,说明u走弯路了,修改u的路径,使其成为v的子结点 if (u->dist > v->dist + 1 && u->ts <= v->ts) { // reassign the parent u->parent = ei ^ 1; // 从新设置u的父节点为v(编号ei),记录为当前的弧 u->ts = v->ts; // 更新u的时间戳与v相同 u->dist = v->dist + 1; // u为v的子结点,路径长度加1 } } if (e0 > 0) break; } // exclude the vertex from the active list first = first->next; v->next = 0; } if (e0 <= 0) break; //===================================================// // 第二阶段: 流量统计与树的拆分 //===第一节===// //查找路径中的最小权值 minWeight = edgePtr[e0].weight; assert(minWeight > 0); // 遍历整条路径分两个方向进行,从当前结点开始,向前回溯s树,向后回溯t树 // 2次遍历, k=1: 回溯s树, k=0: 回溯t树 for (int k = 1; k >= 0; k--) { //回溯的方法为:取当前结点的父节点,判断是否为终端结点 for (v = vtxPtr + edgePtr[e0^k].dst;; v = vtxPtr + edgePtr[ei].dst) { if ((ei = v->parent) < 0) break; weight = edgePtr[ei^k].weight; minWeight = MIN(minWeight, weight); assert(minWeight > 0); } weight = fabs(v->weight); minWeight = MIN(minWeight, weight); assert(minWeight > 0); } //===第二节===// // 修改当前路径中的所有的weight权值 /* 注意到任何时候s和t树的结点都只有一条弧使其连接到树中, 当这条弧权值减少为0则此结点从树中断开, 若其无子结点,则成为孤立点, 若其拥有子结点,则独立为森林,但是ei的子结点还不知道他们被孤立了! */ edgePtr[e0].weight -= minWeight; //正向路径权值减少 edgePtr[e0 ^ 1].weight += minWeight; //反向路径权值增加 flow += minWeight; //修改当前流量 // k = 1: source tree, k = 0: destination tree for (int k = 1; k >= 0; k--) { for (v = vtxPtr + edgePtr[e0^k].dst;; v = vtxPtr + edgePtr[ei].dst) { if ((ei = v->parent) < 0) break; edgePtr[ei ^ (k ^ 1)].weight += minWeight; if ((edgePtr[ei^k].weight -= minWeight) == 0) { orphans.push_back(v); v->parent = ORPHAN; } } v->weight = v->weight + minWeight*(1 - k * 2); if (v->weight == 0) { orphans.push_back(v); v->parent = ORPHAN; } } // 第三阶段: 树的重构 寻找新的父节点,恢复搜索树 curr_ts++; while (!orphans.empty()) { Vtx* v = orphans.back(); //取一个孤儿,记为v2 orphans.pop_back(); //删除栈顶元素,两步操作等价于出栈 int d, minDist = INT_MAX; e0 = 0; vt = v->t; // 遍历当前结点的相邻点,ei为当前弧的编号 for (ei = v->first; ei != 0; ei = edgePtr[ei].next) { if (edgePtr[ei ^ (vt ^ 1)].weight == 0) continue; u = vtxPtr + edgePtr[ei].dst; if (u->t != vt || u->parent == 0) continue; // 计算当前点路径长度 for (d = 0;;) { if (u->ts == curr_ts) { d += u->dist; break; } ej = u->parent; d++; if (ej < 0) { if (ej == ORPHAN) d = INT_MAX - 1; else { u->ts = curr_ts; u->dist = 1; } break; } u = vtxPtr + edgePtr[ej].dst; } // update the distance if (++d < INT_MAX) { if (d < minDist) { minDist = d; e0 = ei; } for (u = vtxPtr + edgePtr[ei].dst; u->ts != curr_ts; u = vtxPtr + edgePtr[u->parent].dst) { u->ts = curr_ts; u->dist = --d; } } } if ((v->parent = e0) > 0) { v->ts = curr_ts; v->dist = minDist; continue; } /* no parent is found */ v->ts = 0; for (ei = v->first; ei != 0; ei = edgePtr[ei].next) { u = vtxPtr + edgePtr[ei].dst; ej = u->parent; if (u->t != vt || !ej) continue; if (edgePtr[ei ^ (vt ^ 1)].weight && !u->next) { u->next = nilNode; last = last->next = u; } if (ej > 0 && vtxPtr + edgePtr[ej].dst == v) { orphans.push_back(u); u->parent = ORPHAN; } } } } return flow; //返回最大流量 } template <class TWeight> bool GCGraph<TWeight>::inSourceSegment(int i) { assert(i >= 0 && i < (int)vtcs.size()); return vtcs[i].t == 0; };
以上是关于图割opencv中构建图和最大流/最小割的源码解读的主要内容,如果未能解决你的问题,请参考以下文章