数学(容斥计数):LNOI 2016 方
Posted 既然选择了远方,便只顾风雨兼程
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了数学(容斥计数):LNOI 2016 方相关的知识,希望对你有一定的参考价值。
Description
上帝说,不要圆,要方,于是便有了这道题。由于我们应该方,而且最好能够尽量方,所以上帝派我们来找正方形
上帝把我们派到了一个有N行M列的方格图上,图上一共有(N+1)×(M+1)个格点,我们需要做的就是找出这些格点形
成了多少个正方形(换句话说,正方形的四个顶点都是格点)。但是这个问题对于我们来说太难了,因为点数太多
了,所以上帝删掉了这(N+1)×(M+1)中的K个点。既然点变少了,问题也就变简单了,那么这个时候这些格点组成
了多少个正方形呢?
Input
第一行三个整数 N, M, K, 代表棋盘的行数、 列数和不能选取的顶点个数。 保证 N, M >= 1, K <=(N + 1) ×
(M + 1)。约定每行的格点从上到下依次用整数 0 到 N 编号,每列的格点依次用 0到 M 编号。接下来 K 行,每
行两个整数 x,y 代表第 x 行第 y 列的格点被删掉了。保证 0 <=x <=N<=10^6, 0 <=y<=M<=10^6,K<=2*1000且不
会出现重复的格点。
Output
仅一行一个正整数, 代表正方形个数对 100000007( 10^8 + 7) 取模之后的值
Sample Input
2 2 4
1 0
1 2
0 1
2 1
1 0
1 2
0 1
2 1
Sample Output
1
这道题因为k很小可以用容斥, 所有正方形数-Σ每个点(在正方形上)的正方形数+Σ每个无序点对(在正方形上)的正方形数-Σ每个无序三个元组(在正方形上)的正方形数+Σ每个四元组(在正方形上)的正方形数
然后我打的复杂化了,不过很好懂,几乎是望文生义……
1 #include <algorithm> 2 #include <iostream> 3 #include <cstring> 4 #include <cstdio> 5 using namespace std; 6 const int N=2010; 7 const int Mod=100000007; 8 typedef long long LL; 9 LL Abs(LL x){return x<0?-x:x;} 10 LL n,m,k,tot,x[N],y[N]; 11 LL Ask(LL a,LL b,LL c){ 12 LL ret,L; 13 if(!a||!b||!c)return 0; 14 if(a>c-1)a=c-1; 15 if(b>c-1)b=c-1; 16 ret=(2*c-a-1)*a/2; 17 if(c-1>=b+1){ 18 L=min(a,c-b-1); 19 ret+=b*L; 20 ret-=(2*c-L-1)*L/2; 21 } 22 return (ret%Mod+Mod)%Mod; 23 } 24 LL Solve1(){ 25 LL ret=0,L,R,U,D; 26 for(int i=1;i<=k;i++){ 27 L=min(x[i]-1,y[i]-1);ret+=L; 28 L=min(n+1-x[i],y[i]-1);ret+=L; 29 L=min(x[i]-1,m+1-y[i]);ret+=L; 30 L=min(n+1-x[i],m+1-y[i]);ret+=L; 31 } 32 for(int i=1;i<=k;i++){ 33 U=x[i]-1;D=n+1-x[i]; 34 L=y[i]-1;R=m+1-y[i]; 35 ret+=Ask(L,R,U); 36 ret+=Ask(L,R,D); 37 ret+=Ask(U,D,L); 38 ret+=Ask(U,D,R); 39 } 40 return ret%Mod; 41 } 42 43 44 LL Solve2(){ 45 LL ret=0,L; 46 LL px,py,dx,dy; 47 for(int i=1;i<=k;i++) 48 for(int j=i+1;j<=k;j++){ 49 dx=x[j]-x[i]; 50 dy=y[j]-y[i]; 51 52 px=x[j]+dy;py=y[j]-dx; 53 if(px>=1&&px<=n+1&&py>=1&&py<=m+1){ 54 px=px-dx;py=py-dy; 55 if(px>=1&&px<=n+1&&py>=1&&py<=m+1)ret+=1; 56 } 57 58 px=x[j]-dy;py=y[j]+dx; 59 if(px>=1&&px<=n+1&&py>=1&&py<=m+1){ 60 px=px-dx;py=py-dy; 61 if(px>=1&&px<=n+1&&py>=1&&py<=m+1)ret+=1; 62 } 63 64 if((x[i]+x[j])%2==(y[i]+y[j])%2){ 65 dx=2*x[i]-(x[i]+x[j]); 66 dy=2*y[i]-(y[i]+y[j]); 67 px=(x[i]+x[j]+dy)/2; 68 py=(y[i]+y[j]-dx)/2; 69 if(px>=1&&px<=n+1&&py>=1&&py<=m+1){ 70 dx=-dx;dy=-dy; 71 px=(x[i]+x[j]+dy)/2; 72 py=(y[i]+y[j]-dx)/2; 73 if(px>=1&&px<=n+1&&py>=1&&py<=m+1)ret+=1; 74 } 75 } 76 } 77 return ret%Mod; 78 } 79 80 LL hshx[N],hshy[N]; 81 int cntx,cnty,vis[N][N]; 82 83 void Prepare(){ 84 for(int i=1;i<=k;i++){ 85 hshx[++cntx]=x[i]; 86 hshy[++cnty]=y[i]; 87 } 88 sort(hshx+1,hshx+cntx+1); 89 cntx=unique(hshx+1,hshx+cntx+1)-hshx-1; 90 sort(hshy+1,hshy+cnty+1); 91 cnty=unique(hshy+1,hshy+cnty+1)-hshy-1; 92 for(int i=1;i<=k;i++){ 93 LL x_=lower_bound(hshx+1,hshx+cntx+1,x[i])-hshx; 94 LL y_=lower_bound(hshy+1,hshy+cnty+1,y[i])-hshy; 95 vis[x_][y_]=i; 96 } 97 } 98 99 int Q(LL x,LL y){ 100 LL x_=lower_bound(hshx+1,hshx+cntx+1,x)-hshx; 101 LL y_=lower_bound(hshy+1,hshy+cnty+1,y)-hshy; 102 return (hshx[x_]==x&&hshy[y_]==y)*vis[x_][y_]; 103 } 104 105 LL Solve3(){ 106 LL ret=0; 107 LL px1,py1,px2,py2,dx,dy; 108 for(int i=1;i<=k;i++) 109 for(int j=i+1;j<=k;j++){ 110 dx=x[j]-x[i]; 111 dy=y[j]-y[i]; 112 113 px1=x[j]+dy;py1=y[j]-dx; 114 if(px1>=1&&px1<=n+1&&py1>=1&&py1<=m+1){ 115 px2=px1-dx;py2=py1-dy; 116 if(px2>=1&&px2<=n+1&&py2>=1&&py2<=m+1){ 117 if(Q(px1,py1)>j)ret+=1; 118 if(Q(px2,py2)>j)ret+=1; 119 } 120 } 121 122 px1=x[j]-dy;py1=y[j]+dx; 123 if(px1>=1&&px1<=n+1&&py1>=1&&py1<=m+1){ 124 px2=px1-dx;py2=py1-dy; 125 if(px2>=1&&px2<=n+1&&py2>=1&&py2<=m+1){ 126 if(Q(px1,py1)>j)ret+=1; 127 if(Q(px2,py2)>j)ret+=1; 128 } 129 } 130 131 if((x[i]+x[j])%2==(y[i]+y[j])%2){ 132 dx=2*x[i]-(x[i]+x[j]); 133 dy=2*y[i]-(y[i]+y[j]); 134 px1=(x[i]+x[j]+dy)/2; 135 py1=(y[i]+y[j]-dx)/2; 136 if(px1>=1&&px1<=n+1&&py1>=1&&py1<=m+1){ 137 dx=-dx;dy=-dy; 138 px2=(x[i]+x[j]+dy)/2; 139 py2=(y[i]+y[j]-dx)/2; 140 if(px2>=1&&px2<=n+1&&py2>=1&&py2<=m+1){ 141 if(Q(px1,py1)>j)ret+=1; 142 if(Q(px2,py2)>j)ret+=1; 143 } 144 } 145 } 146 } 147 return ret%Mod; 148 } 149 150 LL Solve4(){ 151 LL ret=0; 152 LL px1,py1,px2,py2,dx,dy; 153 for(int i=1;i<=k;i++) 154 for(int j=i+1;j<=k;j++){ 155 dx=x[j]-x[i]; 156 dy=y[j]-y[i]; 157 158 px1=x[j]+dy;py1=y[j]-dx; 159 if(px1>=1&&px1<=n+1&&py1>=1&&py1<=m+1){ 160 px2=px1-dx;py2=py1-dy; 161 if(px2>=1&&px2<=n+1&&py2>=1&&py2<=m+1) 162 if(Q(px1,py1)>j&&Q(px2,py2)>j)ret+=1; 163 } 164 165 px1=x[j]-dy;py1=y[j]+dx; 166 if(px1>=1&&px1<=n+1&&py1>=1&&py1<=m+1){ 167 px2=px1-dx;py2=py1-dy; 168 if(px2>=1&&px2<=n+1&&py2>=1&&py2<=m+1) 169 if(Q(px1,py1)>j&&Q(px2,py2)>j)ret+=1; 170 } 171 172 if((x[i]+x[j])%2==(y[i]+y[j])%2){ 173 dx=2*x[i]-(x[i]+x[j]); 174 dy=2*y[i]-(y[i]+y[j]); 175 px1=(x[i]+x[j]+dy)/2; 176 py1=(y[i]+y[j]-dx)/2; 177 if(px1>=1&&px1<=n+1&&py1>=1&&py1<=m+1){ 178 dx=-dx;dy=-dy; 179 px2=(x[i]+x[j]+dy)/2; 180 py2=(y[i]+y[j]-dx)/2; 181 if(px2>=1&&px2<=n+1&&py2>=1&&py2<=m+1) 182 if(Q(px1,py1)>j&&Q(px2,py2)>j)ret+=1; 183 } 184 } 185 } 186 return ret%Mod; 187 } 188 189 int main(){ 190 freopen("square.in","r",stdin); 191 freopen("square.out","w",stdout); 192 scanf("%lld%lld%lld",&n,&m,&k); 193 for(LL L=min(m,n);L>=1;L--){ 194 tot+=(n-L+1)*(m-L+1)%Mod*L%Mod; 195 if(tot>=Mod)tot-=Mod; 196 } 197 for(int i=1;i<=k;i++){ 198 scanf("%lld%lld",&x[i],&y[i]); 199 x[i]+=1;y[i]+=1; 200 } 201 Prepare(); 202 tot-=Solve1();tot%=Mod; 203 tot+=Solve2();tot%=Mod; 204 tot-=Solve3();tot%=Mod; 205 tot+=Solve4();tot%=Mod; 206 tot=(tot+Mod)%Mod; 207 printf("%lld\n",tot); 208 return 0; 209 }
运算有些多,常数比较大,不开O2只有50分,优化的话,可以把LL改成int,Mod的时候有些地方可以改成减。
以上是关于数学(容斥计数):LNOI 2016 方的主要内容,如果未能解决你的问题,请参考以下文章