一种压缩图片的方法---Machine learning 之 K-Means

Posted 暴力的轮胎

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了一种压缩图片的方法---Machine learning 之 K-Means相关的知识,希望对你有一定的参考价值。

背景描述:

  RGB编码:对于一个直接用24bit表示每一个而像素的图像来说,每一个pixel使用8-bit无符号整数(0-255)来表示红or绿or蓝。

压缩目的:

  将128x128大小的图片由原来的24bit表示-压缩成->16bit表示每一个像素的图像。

压缩方法:

  对于每一个pixel, 使用 K-Means选择16bits来表示原来的24bits。当然,具体是通过计算每一个像素空间的16bits大小的聚类来表示原来的24bits。

实现步骤:

  1.将原来的128x128大小的图片读入到一个3维矩阵A中。举个例子 A(50, 33, 3)表示原图片中rowNum = 50 columnNum = 33 RGB中的B维 所对应的

颜色值(0-255)。这样我们就得到了一个 X = (m x 3)matrix of piexl colors( where m = 128 * 128 = 16384)。

  2.运行K-Means算法,取K= 16, 这样将每一个pixel聚类到一个Cluster k上(关于K-means初始K个点的选择 其实就是随机在X中选出K个点作为 centroid的)。用k这个centroid point的location来代表原来的像素值。这里K=16,我们可以用四位来表示16种分类的可能。那么也就需要4bits就可以记录当前piexl的压缩后的分类。(当然,最后还需要有一个对照表 k(16个颜色(?为啥不用4bits来映射,2进制转换太繁琐!这里直接映射就好了)) -> RGB(24bits))。

压缩效果:

  压缩前大小:128*128*24 = 393216 bits;

  压缩后大小:128*128*4 + 16*24 = 65920 bits;

  压缩因子接近 6!

  代码在gitlab Machine learning ex7中。 

核心思路:

  K-means进行图片压缩,压缩的并不是颜色。原来用24位表示颜色,现在也用24位表示颜色。只不过编码方式发生了改变,将原来的24bits种颜色变成了16bits种颜色。而这个过程正是采用的k-means聚类。那么颜色之间的区分度就变得不是那么明显,导致分辨率下降。

Have fun , good luck!

And this is my picture kebe compressed:

 K-Means结果可视化

  如图每一个颜色代表一个cluster(共计16种)。

以上是关于一种压缩图片的方法---Machine learning 之 K-Means的主要内容,如果未能解决你的问题,请参考以下文章

Coursera《machine learning》--(14)数据降维

关于学习machine learning的一些基本知识点

Introduction of Machine Learning

Machine Learning — 逻辑回归

初探Machine Learning----朴素贝叶斯分类方法(naïve Bayes)

Machine learning-机器学习概念篇