2016/09/27 Hadoop Yarn

Posted 码农张

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了2016/09/27 Hadoop Yarn相关的知识,希望对你有一定的参考价值。

1.1 YARN基本架构

    YARN是Hadoop2.0中的资源管理系统,它的基本设计思想是将MRv1中的JobTracker拆分成了两个独立的服务:一个全局的资源管理器ResourceManager和每个应用程序特有的ApplicationMaster。其中ResourceManager负责整个系统的资源管理和分配,而ApplicationMaster负责单个应用程序的管理。

1.2 YARN基本组成结构

    YARN总体上仍然是Master/Slave结构,在这个资源管理框架中,ResourceManager为Master,NodeManager为Slave,ResourceManger负责对各个NodeManager上的资源进行统一管理和调度。当用户提交一个应用程序时,需要提供一个用以追踪和管理这个程序的ApplicationMaster,它负责向ResourceManager申请资源,并要求NodeManager启动可以占用一定资源的任务。由于不同的ApplicationMaste被分布到不同的节点上,因此它们之间不会互相影响。

image

YARN主要由ResourceManager、NodeManager、ApplicationMaster(图中给出了MapReduce和MPI两种计算框架的ApplicationMaster,分别为MR AppMstr和MPI AppMstr)和Container等几个组件构成。

1.ResourceManager(RM)

        RM是一个全局的资源管理器,负责整个系统的资源管理和分配。它主要由两个组件构成:调度器(Scheduler)和应用程序管理器(Application Manager,ASM)。

  • 调度器

      调度器根据容量、队列等限制条件(如每个队列分配一定的资源,最多执行一定数量的作业等),将系统中的资源分配给各个正在运行的应用程序。需要注意的是,该调度器是一个“纯调度器”,它不再从事任何与具体应用程序相关的工作,比如不负责监控或者跟踪应用的执行状态等,也不负责重新启动因应用执行失败或者硬件故障而产生的失败任务,这些均交由程序相关的ApplicationMaster完成。调度器仅根据各个应用程序的资源需求进行资源分配,而资源分配单位用一个抽象概念“资源容器”Resource Container,简称Container)表示,Container是一个动态资源分配单位,它将内存、CPU、磁盘、网络等资源封装在一起,从而限定每个任务使用的资源量。此外,该调度器是一个可拔插的组件,用户可以根据自己的需要设计新的调度器,YARN提供了多种直接可用的调度器,比如Fair Scheduler 和Capacity Scheduler等。

  • 应用程序管理器

应用程序管理器负责管理整个系统中所有应用程序,包括应用程序提交、与调度器协商资源以启动ApplicationMaster、监控ApplicationMaster运行状态并在失败时重新启动它等。

2.ApplicationMaster(AM)

用户提交的每个应用程序均包含一个AM,主要功能包括:

  • 与RM调度器协商以获取资源(用Container表示);
  • 将得到的任务进一步分配给内部的任务;
  • 与NM通信以启动/停止任务;
  • 监控所有任务运行状态,并在任务运行失败时重新为任务申请资源以重启任务。
3.NodeManager(NM)

    NM是每个节点上的资源和任务管理器,一方面,它会定时地向RM汇报本节点上的资源使用情况和各个Container的运行状态;另一方面,它接受并处理来自AM的Container启动/停止等各种请求。

4.Container

    Container是YARN中的资源抽象,它封装了某个节点上的多维度资源,如内存、CPU、磁盘、网络等,当AM向RM申请资源时,RM为AM返回的资源便是用Container表示的。YARN会为每个任务分配一个Container,且该任务只能使用该Container在描述的资源。

1.3 YARN工作流程

image

  • 用户向YARN中提交应用程序,其中包括ApplicationMaster程序、启动ApplicationMaster的命令、用户程序等。
  • ResourceManager为该应用程序分配第一个Container,并与对应的NodeManager通信,要求它在这个Container中启动应用程序的ApplicationMaster。
  • ApplicationMaster首先向ResourceManager注册,这样用户可以直接通过ResourceManage查看应用程序的运行状态,然后它将为各个任务申请资源,并监控它的运行状态,直到运行结束。
  • ApplicationMaster采用轮询的方式通过RPC协议向ResourceManager申请和领取资源。
  • 一旦ApplicationMaster申请到资源后,便于对于的NameNode通信,要求它启动任务。
  • NodeManager为任务设置好运行环境(包括环境变量、JAR包、二进制程序等)后,将任务启动命令写到一个脚本中,并通过运行该脚本启动任务。
  • 各个任务通过某个RPC协议向ApplicationMaster汇报自己的状态和进度,以让ApplicationMaster随时掌握各个任务的运行状态,从而可以在任务失败时重新启动任务。

     在应用程序运行过程中,用户可以随时通过RPC向ApplicationMaster查询应用程序的当前运行状态。

  • 应用程序运行完成后,ApplicationMaster向ResourceManager注销并关闭自己。

以上是关于2016/09/27 Hadoop Yarn的主要内容,如果未能解决你的问题,请参考以下文章

2016-09-27-DP小练

C# DateTime.ToString()的各种日期格式

如何在 InfluxDB 中选择最后一条记录

Json数据处理

阿里巴巴文件异步上传

制作一个顶点等距的球体