齐次变换

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了齐次变换相关的知识,希望对你有一定的参考价值。

除了使用三维直角座标来表示物体的空间位置之外,在图学中,也常使用「齐次座标」(homogeneous coordinate)来呈现,这一方面是为了方便将空间的平移、缩放、旋转等转换使用矩阵来记录。

齐次座标使用四个元素来表示,即(x, y, z, w),要将齐次座标转换为三维座标,其关系为(x/w, y/w, z/w),其中w表示座标轴的远近参数,通常设为1,如果要用来表示远近感,则会设定为距离的倒数(1/距离),例如表示一个无限远的距离时,我们会将w 设定为0。

可以直接将之前介绍过的公式使用齐次座标与矩阵来展现,就可以了解齐次座标的好处,例如以三维座标常见的平移、缩放与旋转为例,表示方法如下(原座标x,y ,z,转换后x1,y1,z1):

平移:假设三个平移量分别为Tx、Ty与Tz。 。 。 。

 技术分享

縮放:假設x、y、z的縮放比例分別為a、b、c。。 。。 

技术分享



旋轉:關於旋轉的公式導證,之前介紹過了。。。。 

技术分享

以上是关于齐次变换的主要内容,如果未能解决你的问题,请参考以下文章

如何在 python 中计算图像的 4 X 4 齐次变换矩阵

如何计算具有齐次变换矩阵的相机的视角? [PCL]

如何向量化齐次变换矩阵/张量的计算?

使用 Python 从 3D 中的六个点确定齐次仿射变换矩阵

OpenGL知识点梳理3----变换与坐标系统

闫令琪GAMES101笔记 变换