JZOI2002BZOJ1477P1371青蛙的约会

Posted cdcq(本博客废弃!现用博客:https://www.cn

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了JZOI2002BZOJ1477P1371青蛙的约会相关的知识,希望对你有一定的参考价值。

看lzx的模板才写出来的,我之前的思路好想错了 chad_orz

原题:

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝着对方那里跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。

数据有可能超过2^32

 

扩展gcd,把方程搞出来就很容易了

根据题意可以推出酱紫一个方程:(x+tm)-(y+tn)=kl

然后我们把它变一变:t(m-n)-kl=y-x

因为k不是我们要求的所以k前面的负号可以看成正号,呢么上面这个方程↑就是经典的ax+by=c

丢进扩展欧几里得中解即可

代码:

技术分享
 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<algorithm>
 5 #include<cmath>
 6 using namespace std;
 7 #define ll long long
 8 ll gcd(ll x,ll y){return(y)?gcd(y,x%y):x;}
 9 ll xx,yy,m,n,l;
10 void up_gcd(ll a,ll b,ll &x,ll &y){
11     if(!b){  x=1,y=0;  return ;}
12     up_gcd(b,a%b,x,y);
13     ll c=x;  x=y;  y=c-a/b*x;
14 }
15 int main(){//freopen("ddd.in","r",stdin);
16     cin>>xx>>yy>>m>>n>>l;
17     ll _gcd=gcd(n-m,l);
18     if((xx-yy)%_gcd){  cout<<"Impossible"<<endl;  return 0;}
19     ll _x,_y;
20     up_gcd(n-m,l,_x,_y);
21     _x*=(xx-yy)/_gcd;
22     cout<<(_x%l+l)%l<<endl;
23     return 0;
24 }
View Code

 

以上是关于JZOI2002BZOJ1477P1371青蛙的约会的主要内容,如果未能解决你的问题,请参考以下文章

bzoj5438: 青蛙

bzoj1477 青蛙的约会

bzoj1477: 青蛙的约会(exgcd)

[BZOJ2391]Cirno的忧郁

BZOJ1477: 青蛙的约会

bzoj1477: 青蛙的约会