双亲数 容斥

Posted CHADLZX

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了双亲数 容斥相关的知识,希望对你有一定的参考价值。

小D是一名数学爱好者,他对数字的着迷到了疯狂的程度。
我们以d = gcd(a, b)表示a、b的最大公约数,小D执著的认为,这样亲密的关系足可以用双亲来描述,此时,我们称有序数对(a, b)为d的双亲数。
与正常双亲不太相同的是,对于同一个d,他的双亲太多了 >_<
比如:(4, 6), (6, 4), (2, 100)都是2的双亲数。
于是一个这样的问题摆在眼前,对于0 < a <= A, 0 < b <= B,有多少有序数对(a, b)是d的双亲数?

 

题意就是求满足0<x<=N,0<y<=M,gcd(x,y)=d的点对数量;

设f[i]为gcd(x,y)=i的点对数量,根据乘法原理可得满足i|gcd(x,y)的点对数量为(n/i)*(m/i),我们只需要将后面的数量减去sum(f[d*i]),d>=2,d*i<=min(n,m);

这就是个从后向前的递推,时间复杂度是O(nlogn);

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<cstdlib>
#include<ctime>
#include<vector>
#include<algorithm>
#include<queue>
#include<map>
using namespace std;
#define LL long long
int n,m,d;
LL f[1010000];
void init(){
    scanf("%d%d%d",&n,&m,&d);
    LL sum=0;
    if(n>m)swap(n,m);
    for(int i=n/d*d;i;i-=d){
        f[i]=((LL)n/i)*((LL)m/i);
        for(int j=i<<1;j<=n;j+=i)f[i]-=f[j];
    }
    cout<<f[d]<<endl;
    
}
int main(){
    freopen("1.in","r",stdin);
    freopen("1.out","w",stdout);
    init();
    return 0;
}

 

以上是关于双亲数 容斥的主要内容,如果未能解决你的问题,请参考以下文章

P4450 双亲数

hdu4153(容斥原理求质数)

BZOJ2045双亲数 莫比乌斯反演

BZOJ_2440_[中山市选2011]完全平方数_容斥原理+线性筛

JZYZOJ1376 [coci2011]友好数对 容斥定理 状态压缩

BZOJ 2045: 双亲数