CNN卷积神经网络 的学习记录一

Posted 小胖蛋

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了CNN卷积神经网络 的学习记录一相关的知识,希望对你有一定的参考价值。

1. 概述

卷积神经网络的特点:一方面它的神经元间的连接是非全连接的, 另一方面同一层中某些神经元之间的连接的权重是共享的(即相同的)。

上图左:图像有1000*1000个像素,有10^6个隐层神经元,进行全连接,有1000*1000*100000=10^12个权值参数

上图右:同样有1000*1000个像素,感受野为10*10 ,每一个节点与上层节点同位置附件10x10的窗口相连接,则有10*10*10^6=10^8个权值参数

我们可以很容易计算网络节点的输出。例如,对于上图中被标注为红色节点的净输入,就等于所有与红线相连接的上一层神经元节点值与红色线表示的权值之积的累加。这样的计算过程,很多书上称其为卷积。

卷积神经网络另外一个特性是权值共享。例如,就上面右边那幅图来说,权值共享,也就是说所有的红色线标注的连接权值相同。也就是每一个节点与感受野内像素的连接权值都相等。

 

2、 CNN的结构

卷积神经网络是一个多层的神经网络,每层由多个二维平面组成,而每个平面由多个独立神经元组成。

    上图:卷积神经网络的概念示范:输入图像通过和三个可训练的滤波器和可加偏置进行卷积,卷积后在C1层产生三个特征映射图,然后特征映射图中每组的四个像素再进行求和,加权值,加偏置,通过一个Sigmoid函数得到三个S2层的特征映射图。这些映射图再进过滤波得到C3层。这个层级结构再和S2一样产生S4。最终,这些像素值被光栅化,并连接成一个向量输入到传统的神经网络,得到输出。

 一般地,C层为特征提取层,每个神经元的输入与前一层的局部感受野相连,并提取该局部的特征,一旦该局部特征被提取后,它与其他特征间的位置关系也随之确定下来;S层是特征映射层,网络的每个计算层由多个特征映射组成,每个特征映射为一个平面,平面上所有神经元的权值相等。特征映射结构采用影响函数核小的sigmoid函数作为卷积网络的激活函数,使得特征映射具有位移不变性。

       此外,由于一个映射面上的神经元共享权值,因而减少了网络自由参数的个数,降低了网络参数选择的复杂度。卷积神经网络中的每一个特征提取层(C-层)都紧跟着一个用来求局部平均与二次提取的计算层(S-层),这种特有的两次特征提取结构使网络在识别时对输入样本有较高的畸变容忍能力。

卷积网络的核心思想是将:局部感受野、权值共享(或者权值复制)以及时间或空间亚采样这三种结构思想结合起来获得了某种程度的位移、尺度、形变不变性

 

 3、 CNN的训练

训练算法与传统的BP算法差不多。主要包括4步,这4步被分为两个阶段:

第一阶段,向前传播阶段:

a)从样本集中取一个样本(X,Yp),将X输入网络;

b)计算相应的实际输出Op

      在此阶段,信息从输入层经过逐级的变换,传送到输出层。这个过程也是网络在完成训练后正常运行时执行的过程。在此过程中,网络执行的是计算(实际上就是输入与每层的权值矩阵相点乘,得到最后的输出结果):

          Op=Fn(…(F2(F1(XpW(1))W(2))…)W(n)

第二阶段,向后传播阶段

a)算实际输出Op与相应的理想输出Yp的差;

b)按极小化误差的方法反向传播调整权矩阵。

 

参考 :http://www.cnblogs.com/nsnow/p/4562363.html

 

以上是关于CNN卷积神经网络 的学习记录一的主要内容,如果未能解决你的问题,请参考以下文章

记录|深度学习100例-卷积神经网络(CNN)minist数字分类 | 第1天

记录|深度学习100例-卷积神经网络(CNN)彩色图片分类 | 第2天

深度学习100例-卷积神经网络(CNN)猴痘病识别 | 第45天

卷积神经网络CNN实现mnist手写数字识别

机器学习-卷积神经网络CNN中的单通道和多通道图片差异

基于 CNN-GRU 的菇房多点温湿度预测方法研究 学习记录