两个值匹配pandas时的累计计数

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了两个值匹配pandas时的累计计数相关的知识,希望对你有一定的参考价值。

我正在尝试创建一个新的Column,在单独的cumulative count中显示基于值的columns

所以对于下面的代码,我正在尝试根据CauseAnswer Columns创建两个新列。因此,对于Column Answer中的值,如果In位于Column Cause,我想在新列中提供累积计数。

import pandas as pd

d = ({
    'Cause' : ['In','','','In','','In','In'],
    'Answer' : ['Yes','No','Maybe','No','Yes','No','Yes'],
    })

df = pd.DataFrame(d)

输出:

  Answer Cause
0    Yes    In
1     No      
2  Maybe      
3     No    In
4    Yes      
5     No    In
6    Yes    In

预期产出:

  Answer Cause Count_No Count_Yes
0    Yes    In                  1
1     No                         
2  Maybe                         
3     No    In        1          
4    Yes                         
5     No    In        2          
6    Yes    In                  2

我尝试过以下但是出错了。

df['cumsum'] = df.groupby(['Answer'])['Cause'].cumsum()
答案

没有for循环: - )

s=df.loc[df.Cause=='In'].Answer.str.get_dummies()
pd.concat([df,s.cumsum().mask(s!=1,'')],axis=1).fillna('')
Out[62]: 
  Answer Cause No Yes
0    Yes    In      1
1     No             
2  Maybe             
3     No    In  1    
4    Yes             
5     No    In  2    
6    Yes    In      2
另一答案

这是一种方式 -

for val in ['Yes', 'No']:
    cond = df.Answer.eq(val) & df.Cause.eq('In')
    df.loc[cond, 'Count_' + val] = cond[cond].cumsum()

df
#  Cause Answer  Count_Yes  Count_No
#0    In    Yes        1.0       NaN
#1           No        NaN       NaN
#2        Maybe        NaN       NaN
#3    In     No        NaN       1.0
#4          Yes        NaN       NaN
#5    In     No        NaN       2.0
#6    In    Yes        2.0       NaN

以上是关于两个值匹配pandas时的累计计数的主要内容,如果未能解决你的问题,请参考以下文章

使用 Pandas 计算分组计数时的案例

在 pandas / python 中对条件值进行分组和计数

Pandas常用累计同比环比等统计方法实践案例

合并具有来自两个不同列的匹配值的 DataFrame - Pandas [重复]

06 pandas DataFrame - 数据过滤、NaN处理、统计方法

如何匹配两个 DataFrame 中的特定值并在 Python Pandas 中添加额外的列? [复制]