Proximal Gradient Descent-近端梯度下降

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Proximal Gradient Descent-近端梯度下降相关的知识,希望对你有一定的参考价值。

Proximity Gradient Descent 用来解决 $L_1$ 正则中 0 点不可导的问题,先引入一个 proximity operator :

\[\mbox {prox} _{h}(x) = \arg \min_u (h(u)  + \frac{1}{2}||u - x||_2^2)\]

\[\mbox {prox} _{\lambda h}(x) = \arg \min_u (h(u)  + \frac{1}{2 \lambda}||u - x||_2^2)\]

对于一个最优化问题,形式如:

\[\min_x h(x) + g(x)\]

可以用如下方法来迭代求解:

\[x^{k+1} = \mbox{prox}_{\gamma h}(x^k-\gamma \nabla g(x^k)) \]

因为 如此迭代下去,是会朝着极小方向前进的:

\begin{aligned}x^{k+1} &= \mbox{prox}_{\gamma h}(x^k-\gamma \nabla g(x^k)) \\
&= \mbox{arg}\min_x \left(h(x)+\frac{1}{2\gamma}\mid\mid x-x^k+ \gamma \nabla g(x^k) \mid\mid_2^2\right) \\
&= \mbox{arg}\min_x \left(h(x)+ \frac{\gamma}{2}\mid\mid \nabla g(x)\mid\mid_2^2 + \gamma \nabla g(x^k)^T(x-x^k)+ \frac{1}{2\gamma}\mid\mid x-x^k \mid\mid_2^2\right) \\
&= \mbox{arg}\min_x \left(h(x)+ g(x^k) + \gamma \nabla g(x^k)^T(x-x^k) +\frac{1}{2\gamma}\mid\mid x-x^k \mid\mid_2^2\right) \\
& \approx \mbox{arm}\min_x \ h(x)+g(x)
\end{aligned}

后两式的变化是因为,变化的两项都与 x 无关,然后通过二阶泰勒展开近似得到目标函数。

当 $g(x)$ 为 $L_1$ 正则时:

\[ x^{k+1}  = \mbox{prox} _{\lambda^k y} (x^k  - \lambda^k  \nabla f(x^k))\]

 

 

参考:

http://webcache.googleusercontent.com/search?q=cache:6KVgr87ZVZ8J:roachsinai.github.io/2016/08/03/1L1_L2_norm/+&cd=3&hl=zh-CN&ct=clnk&gl=id

http://breezedeus.github.io/2013/11/16/breezedeus-proximal-gd.html

http://blog.csdn.net/lanyanchenxi/article/details/50448640

https://www.zhihu.com/question/38426074

以上是关于Proximal Gradient Descent-近端梯度下降的主要内容,如果未能解决你的问题,请参考以下文章

Meta learning paper:Learning to learn by gradient descent by gradient descent (Nips2016)

随机梯度下降(Stochastic gradient descent)和 批量梯度下降(Batch gradient descent )的公式对比

随机梯度下降(stochastic gradient descent),批梯度下降(batch gradient descent),正规方程组(The normal equations)

随机梯度下降(Stochastic gradient descent)和 批量梯度下降(Batch gradient descent )的公式对比实现对比

随机梯度下降(Stochastic gradient descent)和 批量梯度下降(Batch gradient descent )的公式对比实现对比[转]

Gradient descent梯度下降(Steepest descent)