C高级 框架开发中红黑树结构

Posted 喜欢兰花山丘

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了C高级 框架开发中红黑树结构相关的知识,希望对你有一定的参考价值。

引言  -- 红黑树历史

  红黑树是数据结构学习中一道卡. 底层库容器中必不可少的算法. 历经各种实战运用,性能有保障. 同样红黑树不好理解, 就算理解了, 代码也不好写.

就算写了, 工程库也难构建. 关于红黑树基础讲解推荐看下面博主的红黑树博文系列,感觉不错.

  红黑树(一)之 原理和算法详细介绍 

对于红黑树小背景简介摘抄如下:

  红黑树英语:Red–black tree)是一种自平衡二叉查找树,是在计算机科学中用到的一种数据结构,典型的用途是实现关联数组。它是在1972年由鲁道夫·贝尔发明的,他称之为"对称二叉B树",它现代的名字是在Leo J. Guibas和Robert Sedgewick于1978年写的一篇论文中获得的。它是复杂的,但它的操作有着良好的最坏情况运行时间,并且在实践中是高效的:它可以在O(log n)时间内做查找,插入和删除,这里的n是树中元素的数目。

对于红黑树更加详细的历史参照下面资料.

  红黑树 https://zh.wikipedia.org/wiki/%E7%BA%A2%E9%BB%91%E6%A0%91

本文重点介绍工程开发中, 红黑树工程基库的封装.直接用现成的最爽.

 

前言  -- 红黑树工程库源码

   一言不合就上源码! 

rbtree.h

#ifndef _H_RBTREE
#define _H_RBTREE

struct rbnode {
    unsigned long    parent_color;
    struct rbnode * right;
    struct rbnode * left;
};

typedef void * (* new_f)(void *);
typedef int (* cmp_f)(const void *, const void *);
typedef void (* die_f)(void *);

typedef struct {
    struct rbnode * root;
    new_f new;
    cmp_f cmp;
    die_f die;
} * rbtree_t;

/*
 * 每个想使用红黑树的结构, 需要在头部插入下面宏. 
 * 例如 :
    struct person {
        _HEAD_RBTREE;
        ... // 自定义信息
    };
 */
#define _HEAD_RBTREE    struct rbnode __node

/*
 * 创建一颗红黑树头结点 
 * new        : 注册创建结点的函数
 * cmp        : 注册比较的函数
 * die        : 注册程序销毁函数
 *            : 返回创建好的红黑树结点
 */
extern rbtree_t rb_new(new_f new, cmp_f cmp, die_f die);

/*
 * 插入一个结点, 会插入 new(pack)
 * tree        : 红黑树头结点
 * pack        : 待插入的结点当cmp(x, pack) 右结点
 */
extern void rb_insert(rbtree_t tree, void * pack);

/*
 * 删除能和pack匹配的结点
 * tree        : 红黑树结点
 * pack        : 当cmp(x, pack) 右结点
 */
extern void rb_remove(rbtree_t tree, void * pack);

/*
 * 得到红黑树中匹配的结点
 * tree        : 匹配的结点信息
 * pack        : 当前待匹配结点, cmp(x, pack)当右结点处理
 */
extern void * rb_get(rbtree_t tree, void * pack);

/*
 * 销毁这颗二叉树
 * tree        : 当前红黑树结点
 */
extern void rb_die(rbtree_t tree);

#endif /* _H_RBTREE */

rbtree.c

#include "rbtree.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/*
 * 操作辅助宏, 得到红黑树中具体父结点, 颜色. 包括详细设置信息
 * r    : 头结点
 * p    : 父结点新值
 * c    : 当前颜色
 */
#define rb_parent(r)        ((struct rbnode *)((r)->parent_color & ~3))
#define rb_color(r)            ((r)->parent_color & 1)
#define rb_is_red(r)        (!rb_color(r))
#define rb_is_black(r)        rb_color(r)
#define rb_set_black(r)        (r)->parent_color |= 1
#define rb_set_red(r)        (r)->parent_color &= ~1

static inline void rb_set_parent(struct rbnode * r, struct rbnode * p) {
     r->parent_color = (r->parent_color & 3) | (unsigned long)p;
}

static inline void rb_set_color(struct rbnode * r, int color) {
     r->parent_color = (r->parent_color & ~1) | (1 & color);
}

static inline int _rb_cmp(const void * ln, const void * rn) {
    return (const char *)ln - (const char *)rn;
}

 /*
  * 创建一颗红黑树头结点
  * new        : 注册创建结点的函数
  * cmp        : 注册比较的函数
  * die        : 注册程序销毁函数
  *            : 返回创建好的红黑树结点
  */
rbtree_t 
rb_new(new_f new, cmp_f cmp, die_f die) {
    rbtree_t tree = malloc(sizeof(*tree));
    if(NULL == tree) {
        fprintf(stderr, "rb_new malloc is error!");
        return NULL;    
    }
    
    tree->root = NULL;
    tree->new = new;
    tree->cmp = cmp ? cmp : _rb_cmp;
    tree->die = die;

    return tree;
}

static inline struct rbnode * _rb_new(rbtree_t tree, void * pack) {
    struct rbnode * node = tree->new ? tree->new(pack) : pack;
    memset(node, 0, sizeof(struct rbnode));
    return node;
}

/* 
 * 对红黑树的节点(x)进行左旋转
 *
 * 左旋示意图(对节点x进行左旋):
 *      px                              px
 *     /                               /
 *    x                               y                
 *   /  \\      --(左旋)-->           / \\                #
 *  lx   y                          x  ry     
 *     /   \\                       /  \\
 *    ly   ry                     lx  ly  
 *
 */
static void _rbtree_left_rotate(rbtree_t tree, struct rbnode * x) {
    // 设置x的右孩子为y
    struct rbnode * y = x->right;
    struct rbnode * xparent = rb_parent(x);

    // 将 “y的左孩子” 设为 “x的右孩子”;
    x->right = y->left;
    // 如果y的左孩子非空,将 “x” 设为 “y的左孩子的父亲”
    if (y->left != NULL)
        rb_set_parent(y->left, x);

    // 将 “x的父亲” 设为 “y的父亲”
    rb_set_parent(y, xparent);

    if (xparent == NULL)
        tree->root = y;            // 如果 “x的父亲” 是空节点,则将y设为根节点
    else {
        if (xparent->left == x)
            xparent->left = y;     // 如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子”
        else
            xparent->right = y;    // 如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子”
    }
    
    // 将 “x” 设为 “y的左孩子”
    y->left = x;
    // 将 “x的父节点” 设为 “y”
    rb_set_parent(x, y);
}

/* 
 * 对红黑树的节点(y)进行右旋转
 *
 * 右旋示意图(对节点y进行左旋):
 *            py                               py
 *           /                                /
 *          y                                x                  
 *         /  \\      --(右旋)-->            /  \\                     #
 *        x   ry                           lx   y  
 *       / \\                                   / \\                   #
 *      lx  rx                                rx  ry
 * 
 */
static void _rbtree_right_rotate(rbtree_t tree, struct rbnode * y) {
    // 设置x是当前节点的左孩子。
    struct rbnode * x = y->left;
    struct rbnode * yparent = rb_parent(y);

    // 将 “x的右孩子” 设为 “y的左孩子”;
    y->left = x->right;
    // 如果"x的右孩子"不为空的话,将 “y” 设为 “x的右孩子的父亲”
    if (x->right != NULL)
        rb_set_parent(x->right, y);

    // 将 “y的父亲” 设为 “x的父亲”
    rb_set_parent(x, yparent);
    if (yparent == NULL) 
        tree->root = x;                // 如果 “y的父亲” 是空节点,则将x设为根节点
    else {
        if (y == yparent->right)
            yparent->right = x;        // 如果 y是它父节点的右孩子,则将x设为“y的父节点的右孩子”
        else
            yparent->left = x;        // (y是它父节点的左孩子) 将x设为“x的父节点的左孩子”
    }

    // 将 “y” 设为 “x的右孩子”
    x->right = y;
    // 将 “y的父节点” 设为 “x”
    rb_set_parent(y, x);
}

/*
 * 红黑树插入修正函数
 *
 * 在向红黑树中插入节点之后(失去平衡),再调用该函数;
 * 目的是将它重新塑造成一颗红黑树。
 *
 * 参数说明:
 *     tree 红黑树的根
 *     node 插入的结点        // 对应《算法导论》中的z
 */
static void _rbtree_insert_fixup(rbtree_t tree, struct rbnode * node) {
    struct rbnode * parent, * gparent, * uncle;

    // 若“父节点存在,并且父节点的颜色是红色”
    while ((parent = rb_parent(node)) && rb_is_red(parent)) {
        gparent = rb_parent(parent);

        //若“父节点”是“祖父节点的左孩子”
        if (parent == gparent->left) {
            // Case 1条件:叔叔节点是红色
            uncle = gparent->right;
            if (uncle && rb_is_red(uncle)) {
                rb_set_black(uncle);
                rb_set_black(parent);
                rb_set_red(gparent);
                node = gparent;
                continue;
            }

            // Case 2条件:叔叔是黑色,且当前节点是右孩子
            if (parent->right == node) {
                _rbtree_left_rotate(tree, parent);
                uncle = parent;
                parent = node;
                node = uncle;
            }

            // Case 3条件:叔叔是黑色,且当前节点是左孩子。
            rb_set_black(parent);
            rb_set_red(gparent);
            _rbtree_right_rotate(tree, gparent);
        } 
        else { //若“z的父节点”是“z的祖父节点的右孩子”
            // Case 1条件:叔叔节点是红色
            uncle = gparent->left;
            if (uncle && rb_is_red(uncle)) {
                rb_set_black(uncle);
                rb_set_black(parent);
                rb_set_red(gparent);
                node = gparent;
                continue;
            }

            // Case 2条件:叔叔是黑色,且当前节点是左孩子
            if (parent->left == node) {
                _rbtree_right_rotate(tree, parent);
                uncle = parent;
                parent = node;
                node = uncle;
            }

            // Case 3条件:叔叔是黑色,且当前节点是右孩子。
            rb_set_black(parent);
            rb_set_red(gparent);
            _rbtree_left_rotate(tree, gparent);
        }
    }

    // 将根节点设为黑色
    rb_set_black(tree->root);
}

/*
 * 插入一个结点, 会插入 new(pack)
 * tree        : 红黑树头结点
 * pack        : 待插入的结点当cmp(x, pack) 右结点
 */
void 
rb_insert(rbtree_t tree, void * pack) {
    cmp_f cmp;
    struct rbnode * node, * x, * y;
    if((!tree) || (!pack) || !(node = _rb_new(tree, pack))) {
        fprintf(stderr, "rb_insert param is empty! tree = %p, pack = %p.\\n", tree, pack);
        return;    
    }
    
    cmp = tree->cmp;
    // 开始走插入工作
    y = NULL;
    x = tree->root;

    // 1. 将红黑树当作一颗二叉查找树,将节点添加到二叉查找树中。从小到大
    while (x != NULL) {
        y = x;
        if (cmp(x, node) > 0)
            x = x->left;
        else
            x = x->right;
    }
    rb_set_parent(node, y);

    if (y != NULL) {
        if (cmp(y, node) > 0)
            y->left = node;             // 情况2:若“node所包含的值” < “y所包含的值”,则将node设为“y的左孩子”
        else
            y->right = node;            // 情况3:(“node所包含的值” >= “y所包含的值”)将node设为“y的右孩子” 
    }
    else
        tree->root = node;              // 情况1:若y是空节点,则将node设为根

    // 2. 设置节点的颜色为红色
    rb_set_red(node);

    // 3. 将它重新修正为一颗二叉查找树
    _rbtree_insert_fixup(tree, node);
}

/*
 * 红黑树删除修正函数
 *
 * 在从红黑树中删除插入节点之后(红黑树失去平衡),再调用该函数;
 * 目的是将它重新塑造成一颗红黑树。
 *
 * 参数说明:
 *     tree 红黑树的根
 *     node 待修正的节点
 */
static void _rbtree_delete_fixup(rbtree_t tree, struct rbnode * node, struct rbnode * parent) {
    struct rbnode * other;

    while ((!node || rb_is_black(node)) && node != tree->root) {
        if (parent->left == node) {
            other = parent->right;
            if (rb_is_red(other)) {
                // Case 1: x的兄弟w是红色的  
                rb_set_black(other);
                rb_set_red(parent);
                _rbtree_left_rotate(tree, parent);
                other = parent->right;
            }
            if ((!other->left || rb_is_black(other->left)) &&
                (!other->right || rb_is_black(other->right))) {
                // Case 2: x的兄弟w是黑色,且w的俩个孩子也都是黑色的  
                rb_set_red(other);
                node = parent;
                parent = rb_parent(node);
            }
            else {
                if (!other->right || rb_is_black(other->right)) {
                    // Case 3: x的兄弟w是黑色的,并且w的左孩子是红色,右孩子为黑色。  
                    rb_set_black(other->left);
                    rb_set_red(other);
                    _rbtree_right_rotate(tree, other);
                    other = parent->right;
                }
                // Case 4: x的兄弟w是黑色的;并且w的右孩子是红色的,左孩子任意颜色。
                rb_set_color(other, rb_color(parent));
                rb_set_black(parent);
                rb_set_black(other->right);
                _rbtree_left_rotate(tree, parent);
                node = tree->root;
                break;
            }
        }
        else {
            other = parent->left;
            if (rb_is_red(other)) {
                // Case 1: x的兄弟w是红色的  
                rb_set_black(other);
                rb_set_red(parent);
                _rbtree_right_rotate(tree, parent);
                other = parent->left;
            }
            if ((!other->left || rb_is_black(other->left)) &&
                (!other->right || rb_is_black(other->right))) {
                // Case 2: x的兄弟w是黑色,且w的俩个孩子也都是黑色的  
                rb_set_red(other);
                node = parent;
                parent = rb_parent(node);
            }
            else {
                if (!other->left || rb_is_black(other->left)) {
                    // Case 3: x的兄弟w是黑色的,并且w的左孩子是红色,右孩子为黑色。  
                    rb_set_black(other->right);
                    rb_set_red(other);
                    _rbtree_left_rotate(tree, other);
                    other = parent->left;
                }
                // Case 4: x的兄弟w是黑色的;并且w的右孩子是红色的,左孩子任意颜色。
                rb_set_color(other, rb_color(parent));
                rb_set_black(parent);
                rb_set_black(other->left);
                _rbtree_right_rotate(tree, parent);
                node = tree->root;
                break;
            }
        }
    }
    if (node)
        rb_set_black(node);
}

/*
 * 删除rb_get得到的结点
 * root        : 红黑树结点
 * pack        : 当cmp(x, pack) 右结点
 */
void 
rb_remove(rbtree_t tree, void * pack) {
    struct rbnode * child, * parent, * node = NULL;
    int color;
    
    if ((!tree) || !(node = (struct rbnode *)pack)) {
        fprintf(stderr, "rb_remove check is error, tree = %p, node = %p.", tree, node);
        return;
    }

    // 被删除节点的"左右孩子都不为空"的情况。
    if (NULL != node->left && node->right != NULL) {
        // 被删节点的后继节点。(称为"取代节点")
        // 用它来取代"被删节点"的位置,然后再将"被删节点"去掉。
        struct rbnode * replace = node;

        // 获取后继节点
        replace = replace->right;
        while (replace->left != NULL)
            replace = replace->left;

        // "node节点"不是根节点(只有根节点不存在父节点)
        if ((parent = rb_parent(node))) {
            if (parent->left == node)
                parent->left = replace;
            else
                parent->right = replace;
        } 
        else 
            // "node节点"是根节点,更新根节点。
            tree->root = replace;

        // child是"取代节点"的右孩子,也是需要"调整的节点"。
        // "取代节点"肯定不存在左孩子!因为它是一个后继节点。
        child = replace->right;
        parent = rb_parent(replace);
        // 保存"取代节点"的颜色
        color = rb_color(replace);

        // "被删除节点"是"它的后继节点的父节点"
        if (parent == node)
            parent = replace; 
        else {
            // child不为空
            if (child)
                rb_set_parent(child, parent);
            parent->left = child;

            replace->right = node->right;
            rb_set_parent(node->right, replace);
        }
        
        rb_set_parent(replace, rb_parent(node));
        rb_set_color(replace, rb_color(node));
        replace->left = node->left;
        rb_set_parent(node->left, replace);

        if (color) // 黑色结点重新调整关系
            _rbtree_delete_fixup(tree, child, parent);
        // 结点销毁操作
        if(tree->die)
            tree->die(node);
        return ;
    }

    if (node->left !=NULL)
        child = node->left;
    else 
        child = node->right;

    parent = rb_parent(node);
    // 保存"取代节点"的颜色
    color = rb_color(node);

    if (child)
        rb_set_parent(child, parent);

    // "node节点"不是根节点
    if (parent) {
        if (parent->left == node)
            parent->left = child;
        else
            parent->right = child;
    }
    else
        tree->root = child;

    if (!color)
        _rbtree_delete_fixup(tree, child, parent);
    if(tree->die)
        tree->die(node);
}

/*
 * 得到红黑树中匹配的结点
 * root        : 匹配的结点信息
 * pack        : 当前待匹配结点, cmp(x, pack)当右结点处理
 */
void * 
rb_get(rbtree_t tree, void * pack) {
    cmp_f cmp;
    struct rbnode * node;
    if((!tree) || !pack) {
        fprintf(stderr, "rb_get param is empty! tree = %p, pack = %p.\\n", tree, pack);
        return NULL;    
    }
    
    cmp = tree->cmp;
    node = tree->root;
    while(node) {
        int ct = cmp(node, pack);
        if(ct == 0)
            return node;
        node = ct > 0 ? node->left : node->right;
    }

    return NULL;
}

// 后序遍历删除操作
static void _rb_die(struct rbnode * root, die_f die) {
    if(NULL == root)
        return;
    _rb_die(root->left, die);
    _rb_die(root->right, die);
    die(root);
}

/*
 * 销毁这颗二叉树
 * root        : 当前红黑树结点
 */
void
rb_die(rbtree_t tree) {
    if(!tree || !tree->root || !tree->die)
        return;

    // 后续递归删除
    _rb_die(tree->root, tree->die);

    // 销毁树本身内存
    tree->root = NULL;
    free(tree);
}
View Code

上面代码主要基于linux内核中红黑树扒下来构建的工程库. 有些细节我们简单解释一下结构.  例如

/*
 * 每个想使用红黑树的结构, 需要在头部插入下面宏. 
 * 例如 :
    struct person {
        _HEAD_RBTREE;
        ... // 自定义信息
    };
 */
#define _HEAD_RBTREE    struct rbnode __node

等同于\'继承\'用法, 放在没一个希望用在红黑树结构的头部. 这些都是从linux内核结构中学到的技巧. libuv框架中也常用这种技巧.
也是C开发中通用潜规则! 还有一个技巧, 如下

struct rbnode {
    unsigned long    parent_color;
    struct rbnode * right;
    struct rbnode * left;
};

#define rb_parent(r)        ((struct rbnode *)((r)->parent_color & ~3))
#define rb_color(r)        ((r)->parent_color & 1)

也是在看内核源码中学到的技巧, 将指针的后2位地址, 用于保存结点颜色. 为什么可行呢,

因为 struct rbnode 结构体内存是以 sizeof (unsigned long) 大小对齐. 那么该结构地址也是以 n*sizeof(unsigned long) 递增.

后两位都是0空出来的. 用于保存红黑树结点的颜色信息(RED | BLACK). 不得不佩服linux内核代码的精巧.

后面还有一个自己补充的技巧

typedef void * (* new_f)(void *);
typedef int (* cmp_f)(const void *, const void *);
typedef void (* die_f)(void *);

typedef struct {
    struct rbnode * root;
    new_f new;
    cmp_f cmp;
    die_f die;
} * rbtree_t;

实现注册, 创建, 比较, 销毁行为函数, 方便使用. 采用匿名结构, 也是一个C中开发一个小技巧, 这个结构只能是堆上创建. 对外可见, 但是不可构建.

后面会基于这个红黑树基础库, 构建一个简繁对照字典. 最后重申一下, 红黑树是软件开发层最后的堡垒. 数据结构算法也就到这了.

 

 

正文  -- 简单分析设计和测试

   C的设计, 主要看结构. 同样C的难点也是结构. 后面我们做一个简单的简繁转换的字典, 通过C.

需要的资源见这个文件  http://files.cnblogs.com/files/life2refuel/C%E9%AB%98%E7%BA%A7%E5%B7%A5%E7%A8%8B%E4%B8%AD%E4%BD%BF%E7%94%A8%E7%BA%A2%E9%BB%91%E6%A0%91%E5%9F%BA%E5%BA%93.zip

简繁变换的词典,window上截图如下

采用的是ascii编码, 这里一个汉字2字节表示. 上传到linux上后, 采用utf-8编码, 一个中文3个字节. 需要小心!

词典主程序 main.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "rbtree.h"

#define _STR_PATH    "常用汉字简繁对照表.txt"

#define _INT_DICT    (4)

struct dict {
    _HEAD_RBTREE;

    char key[_INT_DICT];
    char value[_INT_DICT];
};

// 需要注册的内容
static void * _dict_new(void * arg) {
    struct dict * node = malloc(sizeof(struct dict));
    if (NULL == node) {
        fprintf(stderr, "_dict_new malloc is error!\\n");
        return NULL;
    }

    *node = *(struct dict *)arg;
    return node;
}

static inline int _dict_cmp(const void * ln , const void * rn) {
    return strcmp(((const struct dict *)ln)->key, ((const struct dict *)rn)->key);
}

static inline void _dict_die(void * arg) {
    free(arg);
}

// 创建内容
void dict_create(rbtree_t tree);
// 得到内容
const char * dict_get(rbtree_t tree, const char * key);

/*
 * 这里测试字典数据, 通过红黑树库
 */
int main(int argc, char * argv[]) {
    // 创建字典树, 再读取内容
    rbtree_t tree = rb_new(_dict_new, _dict_cmp, _dict_die);
    if (NULL == tree) {
        fprintf(stderr, "main rb_new rb is error!\\n");
        return -1;
    }

    // 为tree填充字典数据
    dict_create(tree);

    // 我们输出一下 \'你好\'
    printf("你好吗 -> %s%s%s\\n", 
        dict_get(tree, ""), 
        dict_get(tree, ""),
        dict_get(tree, "")
    );

    // 字典书删除
    rb_die(tree);

    getchar();
    return 0;
}

// 创建内容
void 
dict_create(rbtree_t tree) {
    char c;
    struct dict kv;
    // 打开文件内容
    FILE * txt = fopen(_STR_PATH, "rb");
    if (NULL == txt) {
        fprintf(stderr, "main fopen " _STR_PATH " rb is error!\\n");
        return;
    }
    
    while ((c = fgetc(txt))!=EOF) {
        memset(&kv, 0, sizeof kv);
        // 读取这一行key, 并设值
        kv.key[0] = c;
        kv.key[1] = fgetc(txt);

        // 去掉\\\\t
        c = fgetc(txt);
        if(c < 0) {
            kv.key[2] = c;
            fgetc(txt);
        }

        // 再设置value
        kv.value[0] = fgetc(txt);
        kv.value[1] = fgetc(txt);
        
        c = fgetc(txt);
        if (c != \'\\r\') {// 这些SB的代码, 都是解决不同系统版本的编码冲突的
            kv.value[2] = c;
            fgetc(txt);
        }
// 去掉\\n fgetc(txt); // 插入数据 rb_insert(tree, &kv); } // 合法读取内容部分 fclose(txt); } // 得到内容 const

以上是关于C高级 框架开发中红黑树结构的主要内容,如果未能解决你的问题,请参考以下文章

C#中红黑树的实现

经典算法题:红黑树(阿里笔试题)

高级数据结构---红黑树及其插入左旋右旋代码java实现

算法题 101:红黑树(阿里笔试题)

Java版高级数据结构二叉搜索树&红黑树

15 2 用于查找的高级数据结构和算法 红黑树