九度oj 题目1466:排列与二进制

Posted Jason杰

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了九度oj 题目1466:排列与二进制相关的知识,希望对你有一定的参考价值。

题目描述:

在组合数学中,我们学过排列数。从n个不同元素中取出m(m<=n)个元素的所有排列的个数,叫做从n中取m的排列数,记为p(n, m)。具体计算方法为p(n, m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)! (规定0!=1).当n和m不是很小时,这个排列数是比较大的数值,比如  p(10,5)=30240。如果用二进制表示为p(10,5)=30240=( 111011000100000)b,也就是说,最后面有5个零。我们的问题就是,给定一个排列数,算出其二进制表示的后面有多少个连续的零。

输入:

输入包含多组测试数据,每组测试数据一行。
每行两个整数,n和m,0<m<=n<=10000,n=0标志输入结束,该组数据不用处理。

输出:

对于每个输入,输出排列数p(n, m)的二进制表示后面有多少个连续的零。每个输出放在一行。

样例输入:
10 5
6 1
0 0
样例输出:
5
1

一开始有些抽风,居然想用大数运算来做
幸好看了一下题目数据统计,发现别人的代码都很短,所以考虑此题必有简单办法
思考一下,代码如下
 1 #include <cstdio>
 2 int m,n;
 3 
 4 int main(int argc, char const *argv[])
 5 {
 6     while(scanf("%d %d",&n,&m) != EOF && n != 0 ) {
 7         int ans = 0;
 8         for(int i = n-m+1; i <= n; i++) {
 9             int p = i;
10             while(!(p&1)) {
11                 ans++;
12                 p = p >> 1;
13             }
14         }
15         printf("%d\n",ans);
16     }
17     return 0;
18 }
19     

 

以上是关于九度oj 题目1466:排列与二进制的主要内容,如果未能解决你的问题,请参考以下文章

九度oj 题目1473:二进制数(stack)

九度oj 题目1080:进制转换

九度oj 题目1513:二进制中1的个数

九度OJ题目1080:进制转换(java)使用BigInteger进行进制转换

九度OJ-题目1009:二叉搜索树

九度OJ平台练习 —— 题目1009