hdu 4535(排列组合之错排公式)

Posted AC菜鸟机

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了hdu 4535(排列组合之错排公式)相关的知识,希望对你有一定的参考价值。

吉哥系列故事——礼尚往来

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 1417    Accepted Submission(s): 733


Problem Description
  吉哥还是那个吉哥
  那个江湖人称“叽叽哥”的基哥
  
  每当节日来临,女友众多的叽叽哥总是能从全国各地的女友那里收到各种礼物。
  有礼物收到当然值得高兴,但回礼确是件麻烦的事!
  无论多麻烦,总不好意思收礼而不回礼,那也不是叽叽哥的风格。
  
  现在,即爱面子又抠门的叽叽哥想出了一个绝妙的好办法:他准备将各个女友送来的礼物合理分配,再回送不同女友,这样就不用再花钱买礼物了!
  
  假设叽叽哥的n个女友每人送他一个礼物(每个人送的礼物都不相同),现在他需要合理安排,再回送每个女友一份礼物,重点是,回送的礼物不能是这个女友之前送他的那个礼物,不然,叽叽哥可就摊上事了,摊上大事了......
  
  现在,叽叽哥想知道总共有多少种满足条件的回送礼物方案呢?
 

 

Input
输入数据第一行是个正整数T,表示总共有T组测试数据(T <= 100);
每组数据包含一个正整数n,表示叽叽哥的女友个数为n( 1 <= n <= 100 )。
 

 

Output
请输出可能的方案数,因为方案数可能比较大,请将结果对10^9 + 7 取模后再输出。
每组输出占一行。
 

 

Sample Input
3 1 2 4
 

 

Sample Output
0 1 9
 
错排:考虑一个有 n 个元素的排列,若一个排列中所有的元素都不在自己原来的位置上,那么这样的排列就称为原排列的一个错排。
当 n 个编号元素放在 n个编号位置,元素编号与位置编号各不对应的方法数用 D(n)表示,那么D(n-1)就表示 n-1 个编号元素放在 n-1 个编号位置,各不对应的方法数,其它类推.
第一步,把第 n 个元素放在一个位置,比如位置 k,一共有 n-1 种方法;
第二步,放编号为 k 的元素,这时有两种情况:
⑴把它放到位置 n,那么,对于剩下的n-1 个元素,由于第 k 个元素放到了位置 n,剩下 n-2 个元素就有 D(n-2)种方法;
⑵第 k 个元素不把它放到位置 n,这时,对于这 n-1 个元素,有 D(n-1)种方法;
所以得到错排公式:f[i] = (i-1)*(f[i-1]+f[i-2])
#include<stdio.h>
#include<string.h>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
const LL mod = 1000000007;
LL f[105];
int main()
{
    f[1] =0,f[2]=1;
    for(int i=3;i<=100;i++){
        f[i] = (f[i-1]+f[i-2])%mod*(i-1)%mod;
    }
    int tcase;
    scanf("%d",&tcase);
    while(tcase--){
        int n;
        scanf("%d",&n);
        printf("%lld\n",f[n]);
    }
    return 0;
}

 

以上是关于hdu 4535(排列组合之错排公式)的主要内容,如果未能解决你的问题,请参考以下文章

HDU 2068 RPG错排 错排公式

错排公式

JZYZOJ1544 [haoi2016T2]放棋子 错排公式 组合数学 高精度

数学知识--错排公式

[排列组合 错排 逆元] P4071 [SDOI2016]排列计数

错排问题