MATLAB之图像与音频信号处理

Posted qftm

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了MATLAB之图像与音频信号处理相关的知识,希望对你有一定的参考价值。

原理简介

离散傅立叶、离散余弦和离散小波变换是图像、音频信号常用基础操作,时域信号转换到不同变换域以后,会导致不同程度的能量集中,信息隐藏利用这个原理在变换域选择适当位置系数进行修改,嵌入信息,并确保图像、音频信号经处理后感官质量无明显变化。

变换定义

一维离散傅立叶变换对定义:

技术图片

 

 一维离散余弦变换对定义:

技术图片

 

一维连续小波变换对定义:

技术图片

二维离散傅立叶变换对定义:

技术图片

二维离散余弦变换对定义:

技术图片

 

用离散傅立叶变换分析合成音频和图像

分析合成音频文件包括以下步骤:

l     读取音频文件数据

l     一维离散傅立叶变换

l     一维离散傅立叶逆变换

l     观察结果

第一步:读取音频文件数据

新建一个 m 文件,另存为 example11.m,输入以下命令:

clc;

clear;

len = 40000;

[fn, pn] = uigetfile(‘*.wav‘, ‘请选择音频文件‘);

[x, fs] = wavread(strcat(pn, fn), len);

uigetfile 是文件对话框函数,提供图形界面供用户选择所需文件,返回目标的目录名和文件名。

函数原型:y= wavread (FILE)

功能:读取微软音频格式(wav)文件内容

输入参数:file 表示音频文件名,字符串

返回参数:y 表示音频样点,浮点型

第二步:一维离散傅立叶变换

新建一个 m 文件,另存为 example12.m,输入以下命令:

xf = fft(x);

f1 = [0:len-1] * fs / len;

xff = fftshift(xf);

hl = floor(len / 2);

f2 = [-hl:hl] * fs / len;

fft 函数对输入参数进行一维离散傅立叶变换并返回其系数,对应频率从 0 到 fs(采样频率),使用 fftshift 将零频对应系数移至中央。上述代码还计算了离散样点对应的频率值,以便更好地观察频谱。

第三步:一维离散傅立叶逆变换

新建一个 m 文件,另存为 example13.m,输入以下命令:

xsync = ifft(xf);

ifft 函数对输入参数进行一维离散傅立叶逆变换并返回其系数。

第四步:观察结果

新建一个 m 文件,另存为 example14.m,输入以下命令:

figure;

subplot(2, 2, 1);plot(x);title(‘original audio‘);

subplot(2, 2, 2);plot(xsync);title(‘synthesize audio‘);

subplot(2, 2, 3);plot(f1, abs(xf));title(‘fft coef. of audio‘);

subplot(2, 2, 4);plot(f2(1:len), abs(xff));title(‘fftshift coef. of auio‘);

figure(n)表示创建第  n 个图形窗。

subplot 是子绘图函数,第一、二个参数指明子图像布局方式,例如,若参数为 2,3 则表示画面共分为 2 行,每行有 3 个子图像。第三个参数表明子图像序号,排序顺序为从左至右,从上至下。

plot 是绘图函数,默认使用方式为 plot(y),参数 y 是要绘制的数据;如果需要指明图像横轴显示序列,则命令行为 plot(x, y),默认方式等同于 plot([0..len-1], y),len 为序列 y 的长度。

技术图片

分析合成图像文件包括以下步骤:

l     读取图像文件数据

l     二维离散傅立叶变换

l     二维离散傅立叶逆变换

l     观察结果

第一步:读取图像文件数据

新建一个 m 文件,另存为 example21.m,输入以下命令:

[fn, pn] = uigetfile(‘*.bmp‘, ‘请选择图像文件‘);

[x, map] = imread(strcat(pn, fn), ‘bmp‘);

I = rgb2gray(x);

函数原型:A = imread(filename,fmt)

功能:读取 fmt 指定格式的图像文件内容

输入参数:filename 表示图像文件名,字符串 Fmt  表示图像文件格式名,字符串,函数支持的图像格式包括:JPEG,TIFF,GIF,BMP 等等,当参数中不包括文件格式名时,函数尝试推断出文件格式。

返回参数:A 表示图像数据内容,整型 rgb2gray 将 RGB 图像转换为灰度图。

第二步:二维离散傅立叶变换

新建一个 m 文件,另存为 example22.m,输入以下命令:

xf = fft2(I);

xff = fftshift(xf);

fft2 函数对输入参数进行二维离散傅立叶变换并返回其系数,使用 fftshift 将零频对应系数移至中央。

第三步:二维离散傅立叶逆变换

新建一个 m 文件,另存为 example23.m,输入以下命令:

xsync = ifft2(xf);

ifft2 函数对输入参数进行二维离散傅立叶逆变换并返回其系数。

第四步:观察结果

新建一个 m 文件,另存为 example24.m,输入以下命令:

figure;

subplot(2, 2, 1);imshow(x);title(‘original image‘);

subplot(2, 2, 2);imshow(uint8(abs(xsync)));title(‘synthesize image‘);

subplot(2, 2, 3);mesh(abs(xf));title(‘fft coef. of image‘);

subplot(2, 2, 4);mesh(abs(xff));title(‘fftshift coef. of image‘);

imshow 是二维数据绘图函数,mesh 通过三维平面显示数据。

技术图片

用离散余弦变换分析合成音频和图像

分析合成音频文件包括以下步骤:

l     读取音频文件数据

l     一维离散余弦变换

l     一维离散余弦逆变换

l     观察结果

第一步:一维离散余弦变换

新建一个 m 文件,另存为 example31.m,输入以下命令:

xf = dct(x);

dct 函数对输入参数进行一维离散余弦变换并返回其系数,对应频率从 0 到 fs(采样频率)。

第二步:一维离散余弦逆变换

新建一个 m 文件,另存为 example32.m,输入以下命令:

xsync = idct(xf);

[row,col]=size(x);

xff=zeros(row,col);

xff(1:row,1:col)=xf(1:row,1:col);

y=idct(xff);

idct 函数对输入参数进行一维离散余弦逆变换并返回其系数。离散余弦变换常用

于图像压缩,可以尝试只使用部分系数重构语言,通过观察可发现,原始音频和

合成后音频两者差别不大。

第三步:观察结果

新建一个 m 文件,另存为 example33.m,输入以下命令:

figure;

subplot(2, 2, 1);plot(x);title(‘original audio‘);

subplot(2, 2, 2);plot(xsync);title(‘synthesize audio‘);

subplot(2, 2, 3);plot(f1, abs(xf));title(‘fft coef. of audio‘);

subplot(2, 2, 4);plot(f2(1:len), abs(xff));title(‘fftshift coef. of auio‘);

技术图片

分析合成图像文件包括以下步骤:

l     读取图像文件数据

l     二维离散余弦变换

l     二维离散余弦逆变换

l     观察结果

第一步:二维离散余弦变换

新建一个 m 文件,另存为 example41.m,输入以下命令:

xf = dct2(I);

dct2 函数对输入参数进行二维离散余弦变换并返回其系数。

第二步:二维离散余弦逆变换

新建一个 m 文件,另存为 example42.m,输入以下命令:

xsync = uint8(idct2(xf));

[row, col] = size(I);

lenr = round(row * 4 / 5);

lenc = round(col * 4 / 5);

xff = zeros(row, col);

xff(1:lenr, 1:lenc) = xf(1:lenr, 1:lenc);

y = uint8(idct2(xff));

idct2  函数对输入参数进行二维离散余弦逆变换并返回其系数。可以尝试使用部分系数重构图像,本例中使用了系数矩阵中 4/5 的数据,其它部分置零。为了保证图像能正确显示,使用 uint8 对重构图像原始数据进行了数据类型转换,确保其取值范围在 0 到 255 之间。

第三步:观察结果

请输入命令显示四个子图,分别是原始图像、使用全部系数恢复的图像,使用部分系数恢复的图像和用三维立体图方式显示系数。

新建一个 m 文件,另存为 example43.m,输入以下命令:

figure;

subplot(2, 2, 1);imshow(x);title(‘original image‘);

subplot(2, 2, 2);imshow(uint8(abs(xsync)));title(‘synthesize image‘);

subplot(2, 2, 3);imshow(uint8(abs(y)));title(‘part synthesize image‘);

subplot(2, 2, 4);mesh(abs(xff));title(‘fftshift coef. of image‘);

技术图片

用离散小波变换分析合成音频和图像

分析合成音频文件包括以下步骤:

l     读取音频文件数据

l     一维离散小波变换

l     一维离散小波逆变换

l     观察结果

详细操作步骤为:

第一步:一维离散小波变换

新建一个 m 文件,另存为 example51.m,输入以下命令:

[C, L] = wavedec(x, 2, ‘db4‘);

wavedec 函数对输入参数进行一维离散小波变换并返回其系数 C 和各级系数长度L。第二个参数指明小波变换的级数,第三个参数指明小波变换使用的小波基名称。

第二步:一维离散小波逆变换

新建一个 m 文件,另存为 example52.m,输入以下命令:

xsync = waverec(C, L, ‘db4‘);

cA2 = appcoef(C, L, ‘db4‘, 2);

cD2 = detcoef(C, L, 2);

cD1 = detcoef(C, L, 1);

waverec 函数对输入参数进行一维离散小波逆变换并返回其系数。

appcoef 返回小波系数近似分量,第一个参数 C、第二个参数 L 是 wavedec 的返回参数,为各级小波系数和其长度,第三个参数指明小波基名称,第四个参数指明级。

detcoef 返回小波系数细节分量,第一个参数 C、第二个参数 L 是 wavedec 的返回参数,为各级小波系数和其长度,第三个参数指明级数。

第三步:观察结果

新建一个 m 文件,另存为 example53.m,输入以下命令:

figure;

subplot(2, 3, 1);plot(x);title(‘original audio‘);

subplot(2, 3, 2);plot(xsync);title(‘synthesize audio‘);

subplot(2, 3, 4);plot(cA2);title(‘app coef. of audio‘);

subplot(2, 3, 5);plot(cD2);title(‘det coef. of auio‘);

subplot(2, 3, 6);plot(cD1);title(‘det coef. of auio‘);

 技术图片

分析合成图像文件包括以下步骤:

l     读取图像文件数据

l     二维离散小波变换

l     二维离散小波逆变换

l     观察结果

第一步:二维离散小波变换

新建一个 m 文件,另存为 example61.m,输入以下命令:

sx = size(I);

[cA1, cH1, cV1, cD1] = dwt2(I, ‘bior3.7‘);

dwt2  函数对输入参数进行二维一级离散小波变换并返回近似分量,水平细节分量,垂直细节分量和对角线细节分量。

如果要对图像进行多级小波分解,使用 wavedec2 函数。

第二步:二维离散小波逆变换

新建一个 m 文件,另存为 example62.m,输入以下命令:

xsync = uint8(idwt2(cA1, cH1, cV1, cD1, ‘bior3.7‘, sx));

A1 = uint8(idwt2(cA1, [], [], [], ‘bior3.7‘, sx));

H1 = uint8(idwt2([], cH1, [], [], ‘bior3.7‘, sx));

V1 = uint8(idwt2([], [], cV1, [], ‘bior3.7‘, sx));

D1 = uint8(idwt2([], [], [], cD1, ‘bior3.7‘, sx));

idwt2 函数对输入参数进行二维离散小波逆变换并返回其系数。可以尝试仅使用近似分量、水平细节分量、垂直细节分量或对角线细节分量重构图像。

第三步:观察结果

输入命令显示六个子图,分别是原始图像、使用全部系数恢复的图像、小波系数近似分量、水平细节分量、垂直细节分量和对角线细节分量。

新建一个 m 文件,另存为 example63.m,输入以下命令:

figure;

subplot(2, 3, 1);imshow(x);title(‘original image‘);

subplot(2, 3, 2);imshow(uint8(abs(xsync)));title(‘synthesize image‘);

subplot(2, 3, 3);mesh(A1);title(‘app coef. of image ‘);

subplot(2, 3, 4);mesh(H1);title(‘hor coef. of image ‘);

subplot(2, 3, 5);mesh(V1);title(‘ver coef. of image ‘);

subplot(2, 3, 6);mesh(D1);title(‘dia coef. of image ‘);

技术图片

 

 

 

 

以上是关于MATLAB之图像与音频信号处理的主要内容,如果未能解决你的问题,请参考以下文章

《数字图像处理原理与实践(MATLAB版)》一书之代码Part1

信号处理基于小波变换的音频水印嵌入提取matlab源码

matlab怎样进行频谱分析

Matlab信号处理基础

Matlab 音频处理求教

Matlab与C/C++混合编程之Matlab调用OpenCV库函数