背包九讲

Posted xianbin7

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了背包九讲相关的知识,希望对你有一定的参考价值。

01背包

/**
     * 0-1背包问题
     * @param V 背包容量
     * @param N 物品种类
     * @param weight 物品重量
     * @param value 物品价值
     * @return
     */
    public static String ZeroOnePack(int V,int N,int[] weight,int[] value)

        //初始化动态规划数组
        int[][] dp = new int[N+1][V+1];
        //为了便于理解,将dp[i][0]和dp[0][j]均置为0,从1开始计算
        for(int i=1;i<N+1;i++)
            for(int j=1;j<V+1;j++)
                //如果第i件物品的重量大于背包容量j,则不装入背包
                //由于weight和value数组下标都是从0开始,故注意第i个物品的重量为weight[i-1],价值为value[i-1]
                if(weight[i-1] > j)
                    dp[i][j] = dp[i-1][j];
                else
                    dp[i][j] = Math.max(dp[i-1][j],dp[i-1][j-weight[i-1]]+value[i-1]);
            
        
        //则容量为V的背包能够装入物品的最大值为
        int maxValue = dp[N][V];
        //逆推找出装入背包的所有商品的编号
        int j=V;
        String numStr="";
        for(int i=N;i>0;i--)
            //若果dp[i][j]>dp[i-1][j],这说明第i件物品是放入背包的
            if(dp[i][j]>dp[i-1][j])
                numStr = i+" "+numStr;
                j=j-weight[i-1];
            
            if(j==0)
                break;
        
        return numStr;  
    

优化解法

/**
     * 0-1背包问题
     * @param V 背包容量
     * @param N 物品种类
     * @param weight 物品重量
     * @param value 物品价值
     * @return
     */
    public static String ZeroOnePack(int V,int N,int[] weight,int[] value)

        //初始化动态规划数组
        int[][] dp = new int[N+1][V+1];
        //为了便于理解,将dp[i][0]和dp[0][j]均置为0,从1开始计算
        for(int i=1;i<N+1;i++)
            for(int j=1;j<V+1;j++)
                //如果第i件物品的重量大于背包容量j,则不装入背包
                //由于weight和value数组下标都是从0开始,故注意第i个物品的重量为weight[i-1],价值为value[i-1]
                if(weight[i-1] > j)
                    dp[i][j] = dp[i-1][j];
                else
                    dp[i][j] = Math.max(dp[i-1][j],dp[i-1][j-weight[i-1]]+value[i-1]);
            
        
        //则容量为V的背包能够装入物品的最大值为
        int maxValue = dp[N][V];
        //逆推找出装入背包的所有商品的编号
        int j=V;
        String numStr="";
        for(int i=N;i>0;i--)
            //若果dp[i][j]>dp[i-1][j],这说明第i件物品是放入背包的
            if(dp[i][j]>dp[i-1][j])
                numStr = i+" "+numStr;
                j=j-weight[i-1];
            
            if(j==0)
                break;
        
        return numStr;  
    

多重背包:

/**
     * 第三类背包:多重背包
     * 
     * @param args
     */
    public static int manyPack(int V,int N,int[] weight,int[] value,int[] num)
        //初始化动态规划数组
        int[][] dp = new int[N+1][V+1];
        //为了便于理解,将dp[i][0]和dp[0][j]均置为0,从1开始计算
        for(int i=1;i<N+1;i++)
            for(int j=1;j<V+1;j++)
                //如果第i件物品的重量大于背包容量j,则不装入背包
                //由于weight和value数组下标都是从0开始,故注意第i个物品的重量为weight[i-1],价值为value[i-1]
                if(weight[i-1] > j)
                    dp[i][j] = dp[i-1][j];
                else
                    //考虑物品的件数限制
                    int maxV = Math.min(num[i-1],j/weight[i-1]);
                    for(int k=0;k<maxV+1;k++)
                        dp[i][j]=Math.max(dp[i-1][j],dp[i-1][j-k*weight[i-1]]+k*value[i-1]);
                    
                
            
        
        /*//则容量为V的背包能够装入物品的最大值为
        int maxValue = dp[N][V];
        int j=V;
        String numStr="";
        for(int i=N;i>0;i--)
            //若果dp[i][j]>dp[i-1][j],这说明第i件物品是放入背包的
            while(dp[i][j]>dp[i-1][j])
                numStr = i+" "+numStr;
                j=j-weight[i-1];
            
            if(j==0)
                break;
        */
        return dp[N][V];
    

完全背包

/**
     * 第二类背包:完全背包
     * 思路分析:
     * 01背包问题是在前一个子问题(i-1种物品)的基础上来解决当前问题(i种物品),
     * 向i-1种物品时的背包添加第i种物品;而完全背包问题是在解决当前问题(i种物品)
     * 向i种物品时的背包添加第i种物品。
     * 推公式计算时,f[i][y] = maxf[i-1][y], (f[i][y-weight[i]]+value[i]),
     * 注意这里当考虑放入一个物品 i 时应当考虑还可能继续放入 i,
     * 因此这里是f[i][y-weight[i]]+value[i], 而不是f[i-1][y-weight[i]]+value[i]。
     * @param V
     * @param N
     * @param weight
     * @param value
     * @return
     */
    public static String completePack(int V,int N,int[] weight,int[] value)
        //初始化动态规划数组
        int[][] dp = new int[N+1][V+1];
        //为了便于理解,将dp[i][0]和dp[0][j]均置为0,从1开始计算
        for(int i=1;i<N+1;i++)
            for(int j=1;j<V+1;j++)
                //如果第i件物品的重量大于背包容量j,则不装入背包
                //由于weight和value数组下标都是从0开始,故注意第i个物品的重量为weight[i-1],价值为value[i-1]
                if(weight[i-1] > j)
                    dp[i][j] = dp[i-1][j];
                else
                    dp[i][j] = Math.max(dp[i-1][j],dp[i][j-weight[i-1]]+value[i-1]);
            
        
        //则容量为V的背包能够装入物品的最大值为
        int maxValue = dp[N][V];
        int j=V;
        String numStr="";
        for(int i=N;i>0;i--)
            //若果dp[i][j]>dp[i-1][j],这说明第i件物品是放入背包的
            while(dp[i][j]>dp[i-1][j])
                numStr = i+" "+numStr;
                j=j-weight[i-1];
            
            if(j==0)
                break;
        
        return numStr;
    
    /**
     * 完全背包的第二种解法
     * 思路:
     * 只用一个一维数组记录状态,dp[i]表示容量为i的背包所能装入物品的最大价值
     * 用顺序来实现
     */
    public static int completePack2(int V,int N,int[] weight,int[] value)

        //动态规划
        int[] dp = new int[V+1];
        for(int i=1;i<N+1;i++)
            //顺序实现
            for(int j=weight[i-1];j<V+1;j++)
                dp[j] = Math.max(dp[j-weight[i-1]]+value[i-1],dp[j]);
            
        
        return dp[V];
    

 

背包九讲 全篇详细解释

https://blog.csdn.net/yandaoqiusheng/article/details/84782655

背包九讲 java版本

 https://blog.csdn.net/lanyu_01/article/details/79815801

以上是关于背包九讲的主要内容,如果未能解决你的问题,请参考以下文章

动态规划 之背包问题(九讲)

背包九讲

背包九讲(转载,实在不知道哪个是原创了)

背包九讲

(转)dd大牛的背包九讲-背包问题汇总

算法背包九讲