背包九讲

Posted z354681250

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了背包九讲相关的知识,希望对你有一定的参考价值。

目录

第一讲 01背包问题

第二讲 完全背包问题

第三讲 多重背包问题

第四讲 混合三种背包问题

第五讲 二维费用的背包问题

第六讲 分组的背包问题

第七讲 有依赖的背包问题

第八讲 泛化物品

第九讲 背包问题问法的变化

附:USACO中的背包问题


前言

本篇文章是我(dd_engi)正在进行中的一个雄心勃勃的写作计划的一部分,这个计划的内容是写作一份较为完善的NOIP难度的动态规划总结,名为《解动态规划题的基本思考方式》。现在你看到的是这个写作计划最先发布的一部分。

背包问题是一个经典的动态规划模型。它既简单形象容易理解,又在某种程度上能够揭示动态规划的本质,故不少教材都把它作为动态规划部分的第一道例题,我也将它放在我的写作计划的第一部分。

读本文最重要的是思考。因为我的语言和写作方式向来不以易于理解为长,思路也偶有跳跃的地方,后面更有需要大量思考才能理解的比较抽象的内容。更重要的是:不大量思考,绝对不可能学好动态规划这一信息学奥赛中最精致的部分。

你现在看到的是本文的1.0正式版。我会长期维护这份文本,把大家的意见和建议融入其中,也会不断加入我在OI学习以及将来可能的ACM-ICPC的征程中得到的新的心得。但目前本文还没有一个固定的发布页面,想了解本文是否有更新版本发布,可以在OIBH论坛中以背包问题九讲为关键字搜索贴子,每次比较重大的版本更新都会在这里发贴公布。

目录

第一讲 01背包问题

这是最基本的背包问题,每个物品最多只能放一次。

第二讲 完全背包问题

第二个基本的背包问题模型,每种物品可以放无限多次。

第三讲 多重背包问题

每种物品有一个固定的次数上限。

第四讲 混合三种背包问题

将前面三种简单的问题叠加成较复杂的问题。

第五讲 二维费用的背包问题

一个简单的常见扩展。

第六讲 分组的背包问题

一种题目类型,也是一个有用的模型。后两节的基础。

第七讲 有依赖的背包问题

另一种给物品的选取加上限制的方法。

第八讲 泛化物品

我自己关于背包问题的思考成果,有一点抽象。

第九讲 背包问题问法的变化

试图触类旁通、举一反三。

背包的搜索

附:USACO中的背包问题

给出 USACO Training 上可供练习的背包问题列表,及简单的解答。

 

联系方式

如果有任何意见和建议,特别是文章的错误和不足,或者希望为文章添加新的材料,可以通过http://kontactr.com/user/tianyi/这个网页联系我。

致谢

感谢以下名单:

阿坦

jason911

donglixp

他们每人都最先指出了本文第一个beta版中的某个并非无关紧要的错误。谢谢你们如此仔细地阅读拙作并弥补我的疏漏。

感谢 XiaQ,它针对本文的第一个beta版发表了用词严厉的六条建议,虽然我只认同并采纳了其中的两条。在所有读者几乎一边倒的赞扬将我包围的当时,你的贴子是我的一剂清醒剂,让我能清醒起来并用更严厉的眼光审视自己的作品。

当然,还有用各种方式对我表示鼓励和支持的几乎无法计数的同学。不管是当面赞扬,或是在论坛上回复我的贴子,不管是发来热情洋溢的邮件,或是在即时聊天的窗口里竖起大拇指,你们的鼓励和支持是支撑我的写作计划的强大动力,也鞭策着我不断提高自身水平,谢谢你们!

最后,感谢 Emacs 这一世界最强大的编辑器的所有贡献者,感谢它的插件 EmacsMuse 的开发者们,本文的所有编辑工作都借助这两个卓越的自由软件完成。谢谢你们——自由软件社群——为社会提供了如此有生产力的工具。我深深钦佩你们身上体现出的自由软件的精神,没有你们的感召,我不能完成本文。在你们的影响下,采用自由文档的方式发布本文档,也是我对自由社会事业的微薄努力。


P01: 01背包问题

题目

N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。

基本思路

这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。

用子问题定义状态:即f[i][v]表示i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:

f[i][v]=maxf[i-1][v],f[i-1][v-c[i]]+w[i]   

这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:将前i件物品放入容量为v的背包中这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为i-1件物品放入容量为v的背包中,价值为f[i-1][v];如果放第i件物品,那么问题就转化为i-1件物品放入剩下的容量为v-c[i]的背包中,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]

优化空间复杂度

以上方法的时间和空间复杂度均为O(N*V),其中时间复杂度基本已经不能再优化了,但空间复杂度却可以优化到O(V)

先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N每次算出来二维数组f[i][0..V]的所有值。那么,如果只用一个数组f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]f[i-1][v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]f[i-1][v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]f[v-c[i]]保存的是状态f[i-1][v-c[i]]的值。伪代码如下:

for i=1..N

    for v=V..0

        f[v]=maxf[v],f[v-c[i]]+w[i];

其中的f[v]=maxf[v],f[v-c[i]]一句恰就相当于我们的转移方程f[i][v]=maxf[i-1][v],f[i-1][v-c[i]],因为现在的f[v-c[i]]就相当于原来的f[i-1][v-c[i]]。如果将v的循环顺序从上面的逆序改成顺序的话,那么则成了f[i][v]f[i][v-c[i]]推知,与本题意不符,但它却是另一个重要的背包问题P02最简捷的解决方案,故学习只用

以上是关于背包九讲的主要内容,如果未能解决你的问题,请参考以下文章

背包九讲

《背包九讲》

背包九讲(Orz)

[转]背包九讲

第二讲 完全背包问题(对背包九讲的学习)

算法背包九讲