hdu多校第五场1004 (hdu6627) equation 1 计算几何

Posted isakovsky

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了hdu多校第五场1004 (hdu6627) equation 1 计算几何相关的知识,希望对你有一定的参考价值。

题意:

给你一个C,再给你n组a,b,让你求x取什么值的时候,$ \sum_i=1^n |a_i*x+b_i| =C $,要求求出解的个数,并用最简分数从小到大表示,如果有无穷多解,输出-1.

题解:

其实这些方程就是在平面上的一组曲线,都是V形的,最低点都在x轴上,求出所有的零点,以这个零点从左到右排序。

容易看出,这些函数之和也是一条曲线y=f(i),这条曲线最多有n个转折点,那么就在这n个转折点分出的n+1个区间内,和n个点上,用比例公式找和y=C的交点即可。无穷多解的情况是存在一条与y=C重合的线段。

首先预处理出f(i)上所有转折点的值,注意n的范围是1e5,因此不可能让你$O(n^2)$求每一点的值,其实,只需维护a与b的前缀和和后缀和,要求某点$x_k$时,将零点在此点左边的函数取正,零点在此点右边的的函数取反。

$(\sum_i=1^k-1a_i) *x_k+\sum_i=1^k-1b_i-(\sum_i=k+1^na_i) *x_k-\sum_i=k+1^nb_i$

注意判断零点重合情况。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<string>
#include<stack>
#include<algorithm>
using namespace std;
typedef long long LL;
typedef long long ll;
const int M = 1e5 + 10;
const double eps = 1e-7;
const LL mod = 998244353;
const LL lINF = 0x3f3f3f3f3f3f3f3f;
struct node 
    int a, b;
tr[M];
int t;
int n, c;
int fenzi[M], fenmu[M];
int ans;
int gcd(int a, int b)

    if (!b)
        return a;
    else
        return gcd(b, a % b);

double lst;
bool cmp(node x, node y)

    return x.a * y.b - x.b * y.a < 0;

bool cmp2(node x, node y)

    return (double)x.b / -x.a < (double)y.b / -y.a;

bool cmp1(node x, node y)

    return (double)x.b / -x.a <= (double)y.b / -y.a;

int suma[M], sumb[M];
int flag;
double nw;
double nx;
int main()

    scanf("%d", &t);
    while (t--)
    
        scanf("%d%d", &n, &c);
        for (int i = 1; i <= n; i++)
        
            scanf("%d%d", &tr[i].a, &tr[i].b);
        
        sort(tr + 1, tr + n + 1, cmp);
        suma[0] = sumb[0] = 0;
        for (int i = 1; i <= n; i++)
        
            suma[i] = suma[i - 1] + tr[i].a;
            sumb[i] = sumb[i - 1] + tr[i].b;
        
        flag = ans = 0;
        lst = -10000.0;
        for (int i = 0; i <= n; i++)
        
            int tmpa = -suma[n];
            int tmpb = -sumb[n];
            tmpa += 2 * suma[i];
            tmpb += 2 * sumb[i];
            nw = (double)sumb[i] / suma[i];
            nx = (double)sumb[i + 1] / suma[i + 1];
            if (fabs(nw - nx) < eps)
                continue;
            if (!tmpa && tmpb == c)
            
                flag = 1;
                break;
            
            if (!i)
            
                node tmpc;
                tmpc.a = tmpa, tmpc.b = tmpb - c;
                if (cmp1(tmpc, tr[1]))
                
                    fenzi[ans] = -tmpc.b;
                    fenmu[ans] = tmpa;
                    int d = gcd(fenzi[ans], fenmu[ans]);
                    fenzi[ans] /= d;
                    fenmu[ans] /= d;
                    if (fenmu[ans] < 0)
                    
                        fenzi[ans] = -fenzi[ans], fenmu[ans] = -fenmu[ans];
                    
                    ans++;
                
            
            else if (i == n)
            
                node tmpc;
                tmpc.a = tmpa, tmpc.b = tmpb - c;
                if (cmp2(tr[n], tmpc))
                
                    fenzi[ans] = -tmpc.b;
                    fenmu[ans] = tmpa;
                    int d = gcd(fenzi[ans], fenmu[ans]);
                    fenzi[ans] /= d;
                    fenmu[ans] /= d;
                    if (fenmu[ans] < 0)
                    
                        fenzi[ans] = -fenzi[ans], fenmu[ans] = -fenmu[ans];
                    
                    ans++;
                
            
            else
            
                node tmpc;
                tmpc.a = tmpa, tmpc.b = tmpb - c;
                if (cmp2(tr[i], tmpc) && cmp1(tmpc, tr[i + 1]))
                
                    fenzi[ans] = -tmpc.b;
                    fenmu[ans] = tmpa;
                    int d = gcd(fenzi[ans], fenmu[ans]);
                    fenzi[ans] /= d;
                    fenmu[ans] /= d;
                    if (fenmu[ans] < 0)
                    
                        fenzi[ans] = -fenzi[ans], fenmu[ans] = -fenmu[ans];
                    
                    ans++;
                
            
            lst = (double)(tmpb - c) / tmpa;
        
        if (flag)
        
            printf("-1\n");
        
        else
        
            printf("%d", ans);
            for (int i = 0; i < ans; i++)
            
                printf(" %d/%d", fenzi[i], fenmu[i]);
            
            puts("");
        
    

 

以上是关于hdu多校第五场1004 (hdu6627) equation 1 计算几何的主要内容,如果未能解决你的问题,请参考以下文章

暑假N天乐比赛篇 —— 2019杭电暑期多校训练营(第五场)

[补]2019HDU杭电多校第五场H

[2019杭电多校第五场][hdu6624]fraction

hdu多校第五场1007 (hdu6630) permutation 2 dp

[2019杭电多校第五场][hdu6628]permutation 1

[2019杭电多校第五场][hdu6629]string matching