带gcd大数模板

Posted qieqiemin

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了带gcd大数模板相关的知识,希望对你有一定的参考价值。

int ten[4] = 1,10,100,1000;
typedef struct BigNumber

    int d[1200];
    BigNumber(string s)
    
        int i, j, k, len;
        len = s.size();
        d[0] = (len-1)/4+1;
        for(i=1;i<=1199;i++)
            d[i] = 0;
        for(i=len-1;i>=0;i--)
        
            j = (len-i-1)/4+1;
            k = (len-i-1)%4;
            d[j] += ten[k]*(s[i]-'0');
        
        while(d[0]>1 && d[d[0]]==0)
            --d[0];
    
    BigNumber()
    
        *this = BigNumber(string("0"));
    
    string toString()
    
        int i, j, temp;
        string s("");
        for(i=3;i>=1;i--)
        
            if(d[d[0]]>=ten[i])
                break;
        
        temp = d[d[0]];
        for(j=i;j>=0;j--)
        
            s = s+(char)(temp/ten[j]+'0');
            temp %= ten[j];
        
        for(i=d[0]-1;i>0;i--)
        
            temp = d[i];
            for(j=3;j>=0;j--)
            
                s = s+(char)(temp/ten[j]+'0');
                temp %= ten[j];
            
        
        return s;
    
BigNumber;
BigNumber zero("0"), d, temp, mid[15];
bool operator < (const BigNumber &a, const BigNumber &b)

    int i;
    if(a.d[0]!=b.d[0])
        return a.d[0]<b.d[0];
    for(i=a.d[0];i>0;i--)
    
        if(a.d[i]!=b.d[i])
            return a.d[i]<b.d[i];
    
    return 0;

bool operator == (const BigNumber &a, const BigNumber &b)

    int i;
    if(a.d[0]!=b.d[0])
        return 0;
    for(i=a.d[0];i>0;i--)
    
        if(a.d[i]!=b.d[i])
            return 0;
    
    return 1;

BigNumber operator + (const BigNumber &a, const BigNumber &b)

    int i, x;
    BigNumber c;
    c.d[0] = max(a.d[0], b.d[0]);
    x = 0;
    for(i=1;i<=c.d[0];i++)
    
        x = a.d[i]+b.d[i]+x;
        c.d[i] = x%10000;
        x /= 10000;
    
    while(x!=0)
    
        c.d[++c.d[0]] = x%10000;
        x /= 10000;
    
    return c;

BigNumber operator - (const BigNumber &a, const BigNumber &b)

    int i, x;
    BigNumber c;
    c.d[0] = a.d[0];
    x = 0;
    for(i=1;i<=c.d[0];i++)
    
        x = 10000+a.d[i]-b.d[i]+x;
        c.d[i] = x%10000;
        x = x/10000-1;
    
    while((c.d[0]>1) && (c.d[c.d[0]]==0))
        --c.d[0];
    return c;

BigNumber operator * (const BigNumber &a, const BigNumber &b)

    int i, j, x;
    BigNumber c;
    c.d[0] = a.d[0]+b.d[0];
    for(i=1;i<=a.d[0];i++)
    
        x = 0;
        for(j=1;j<=b.d[0];j++)
        
            x = a.d[i]*b.d[j]+x+c.d[i+j-1];
            c.d[i+j-1] = x%10000;
            x /= 10000;
        
        c.d[i+b.d[0]] = x;
    
    while((c.d[0]>1) && (c.d[c.d[0]]==0))
        --c.d[0];
    return c;

bool smaller(const BigNumber &a, const BigNumber &b, int delta)

    int i;
    if(a.d[0]+delta!=b.d[0])
        return a.d[0]+delta<b.d[0];
    for(i=a.d[0];i>0;i--)
    
        if(a.d[i]!=b.d[i+delta])
            return a.d[i]<b.d[i+delta];
    
    return 1;

void Minus(BigNumber &a, const BigNumber &b, int delta)

    int i, x;
    x = 0;
    for(i=1;i<=a.d[0]-delta;i++)
    
        x = 10000+a.d[i+delta]-b.d[i]+x;
        a.d[i+delta] = x%10000;
        x = x/10000-1;
    
    while((a.d[0]>1) && (a.d[a.d[0]]==0))
        --a.d[0];

BigNumber operator * (const BigNumber &a, int k)

    BigNumber c;
    c.d[0] = a.d[0];
    int i, x;
    x = 0;
    for(i=1;i<=a.d[0];i++)
    
        x = a.d[i]*k+x;
        c.d[i] = x%10000;
        x /= 10000;
    
    while(x>0)
    
        c.d[++c.d[0]] = x%10000;
        x /= 10000;
    
    while((c.d[0]>1) && (c.d[c.d[0]]==0))
        --c.d[0];
    return c;

BigNumber operator / (const BigNumber &a, const BigNumber &b)

    int i, j, temp;
    BigNumber c;
    d = a;
    mid[0] = b;
    for(i=1;i<=13;i++)
        mid[i] = mid[i-1]*2;
    for(i=a.d[0]-b.d[0];i>=0;i--)
    
        temp = 8192;
        for(j=13;j>=0;j--)
        
            if(smaller(mid[j], d, i))
            
                Minus(d, mid[j], i);
                c.d[i+1] += temp;
            
            temp /= 2;
        
    
    c.d[0] = max(1, a.d[0]-b.d[0]+1);
    while((c.d[0]>1) && (c.d[c.d[0]]==0))
        --c.d[0];
    return c;

BigNumber Gcd(const BigNumber &a, const BigNumber &b)

    BigNumber c("0");
    if(b==c)
        return a;
    c = a-a/b*b;
    return Gcd(b, c);

以上是关于带gcd大数模板的主要内容,如果未能解决你的问题,请参考以下文章

POJ 2429 GCD &amp; LCM Inverse (大数分解)

bzoj5452[Hnoi2016]大数(莫队)

Latex2021数模国赛模板使用

数模E——信号干扰下的超宽带(UWB)精确定位问题

[Hanani]JAVA大数相关学习记录

最大公约数