bzoj 4119 后缀数组 + 并查集
Posted cjlhy
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了bzoj 4119 后缀数组 + 并查集相关的知识,希望对你有一定的参考价值。
并查集合并的时候更新信息。注意a[ i ] 有负的。
#include<cstdio> #include<algorithm> #include<cmath> #include<cstring> #include<vector> #define LL long long #define LD long double #define ull unsigned long long #define fi first #define se second #define mk make_pair #define PLL pair<LL, LL> #define PLI pair<LL, int> #define PII pair<int, int> #define SZ(x) ((int)x.size()) #define ALL(x) (x).begin(), (x).end() #define fio ios::sync_with_stdio(false); cin.tie(0); using namespace std; const int N = 3e5 + 7; const int inf = 0x3f3f3f3f; const LL INF = 0x3f3f3f3f3f3f3f3f; const int mod = 998244353; const double eps = 1e-8; //const double PI = acos(-1); template<class T, class S> inline void add(T &a, S b) a += b; if(a >= mod) a -= mod; template<class T, class S> inline void sub(T &a, S b) a -= b; if(a < 0) a += mod; template<class T, class S> inline bool chkmax(T &a, S b) return a < b ? a = b, true : false; template<class T, class S> inline bool chkmin(T &a, S b) return a > b ? a = b, true : false; //mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); int r[N], sa[N], _t[N], _t2[N], c[N], rk[N], lcp[N], san; int maxc = 256; void buildSa(int *r, int n, int m) int i, j = 0, k = 0, *x = _t, *y = _t2; for(i = 0; i < m; i++) c[i] = 0; for(i = 0; i < n; i++) c[x[i] = r[i]]++; for(i = 1; i < m; i++) c[i] += c[i - 1]; for(i = n - 1; i >= 0; i--) sa[--c[x[i]]] = i; for(int k = 1; k <= n; k <<= 1) int p = 0; for(i = n - k; i < n; i++) y[p++] = i; for(i = 0; i < n; i++) if(sa[i] >= k) y[p++] = sa[i] - k; for(i = 0; i < m; i++) c[i] = 0; for(i = 0; i < n; i++) c[x[y[i]]]++; for(i = 1; i < m; i++) c[i] += c[i - 1]; for(i = n - 1; i >= 0; i--) sa[--c[x[y[i]]]] = y[i]; swap(x, y); p = 1; x[sa[0]] = 0; for(int i = 1; i < n; i++) if(y[sa[i - 1]] == y[sa[i]] && y[sa[i - 1] + k] == y[sa[i] + k]) x[sa[i]] = p - 1; else x[sa[i]] = p++; if(p >= n) break; m = p; for(i = 1; i < n; i++) rk[sa[i]] = i; for(i = 0; i < n - 1; i++) if(k) k--; j = sa[rk[i] - 1]; while(r[i + k] == r[j + k]) k++; lcp[rk[i]] = k; int fa[N], dl[N], dr[N], sz[N], maxVal[N], minVal[N]; int n, maxH, a[N]; PLL ans[N]; char s[N]; vector<int> V[N]; int getRoot(int x) return x == fa[x] ? x : fa[x] = getRoot(fa[x]); int Merge(int u, int v, LL &way, LL &mx) int x = getRoot(u); int y = getRoot(v); chkmax(mx, 1LL * maxVal[x] * maxVal[y]); chkmax(mx, 1LL * minVal[x] * minVal[y]); way += 1LL * sz[x] * sz[y]; fa[y] = x; chkmin(dl[x], dl[y]); chkmax(dr[x], dr[y]); sz[x] += sz[y]; chkmax(maxVal[x], maxVal[y]); chkmin(minVal[x], minVal[y]); return x; void printSuf(int x) for(int i = sa[x]; i < san; i++) putchar((char)r[i]); for(int i = 0; i < (sa[x] + 5); i++) putchar(‘ ‘); printf("sa: %d lcp: %d\n", sa[x], lcp[x]); int main() scanf("%d", &n); scanf("%s", s); int maxPre = 0; int minPre = 0; for(int i = 0; i < n; i++) scanf("%d", &a[i]); chkmax(ans[0].se, 1LL * maxPre * a[i]); chkmax(ans[0].se, 1LL * minPre * a[i]); chkmax(maxPre, a[i]); chkmin(minPre, a[i]); ans[0].fi = 1LL * n * (n - 1) / 2; for(int i = 0; i < n; i++) r[san++] = s[i]; r[san] = 0; buildSa(r, san + 1, maxc); for(int i = 1; i <= san; i++) V[lcp[i]].push_back(i); chkmax(maxH, lcp[i]); for(int i = 1; i <= san; i++) fa[i] = dl[i] = dr[i] = i; sz[i] = 1; maxVal[i] = a[sa[i]]; minVal[i] = a[sa[i]]; LL way = 0, mx = -INF; for(int i = maxH; i > 0; i--) for(int j = 0; j < SZ(V[i]); j++) int t = V[i][j]; Merge(t - 1, t, way, mx); ans[i].fi = way; ans[i].se = mx; for(int i = 0; i < n; i++) printf("%lld %lld\n", ans[i].fi, ans[i].se); return 0; /* */
以上是关于bzoj 4119 后缀数组 + 并查集的主要内容,如果未能解决你的问题,请参考以下文章
bzoj4199: [Noi2015]品酒大会 (并查集 && 后缀数组)
BZOJ 4199 [Noi2015]品酒大会:后缀数组 + 并查集
bzoj 4199: [Noi2015]品酒大会后缀数组+单调栈+并查集