对SPI进行参数化结构设计

Posted kingstacker

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了对SPI进行参数化结构设计相关的知识,希望对你有一定的参考价值。

前言

为了避免每次SPI驱动重写,直接参数化,尽量一劳永逸。

SPI master有啥用呢,你发现各种外围芯片的配置一般都是通过SPI配置的,只不过有3线和四线。

SPI slave有啥用呢,当外部主机(cpu)要读取FPGA内部寄存器值,那就很有用了,fpga寄存器就相当于RAM,cpu通过SPI寻址读写数据。

代码仅供参考,勿做商业用途。

SPI salve

SPI salve支持功能:(1)支持三线SPI或者四线SPI。通过define切换。

                                 (2)支持指令长度、帧长自定义。

                                 (3)工作时钟可自定义,大于SPI clk的2倍。

用户只需修改:(1)几线SPI。(2)单帧长度。(3)指令长度。(4)寄存器开辟。

注意:指令最高bit表示读写,低写高读,其余bit表示地址。指令接着为数据端,两者位宽之和即为SPI单帧长。

 

//`define SPI_LINE  //是否是三线SPI
`define SPI_FRAME_WIDTH 16 //SPI一帧长度为16
`define SPI_INS_WIDTH 8    //SPI指令长
`timescale 1ns/1ps
////
module spi_slave 
(
    input     i_clk               , //work clk
    input     i_rst_n             ,  
  
    input     i_spi_clk           , //SPI clk
    input     i_spi_cs            , //SPI cs

    `ifdef SPI_LINE                 //条件编译
    inout     io_spi_sdio          
    `else
    input     i_spi_mosi          , //SPI mosi
    output    o_spi_miso            //SPI miso
    `endif          
);
//位宽计算函数
function integer clogb2 (input integer depth);
begin
    for (clogb2=0; depth>0; clogb2=clogb2+1) 
        depth = depth >>1;                          
end
endfunction
reg r_cs = 1b1; //打一拍
always @(posedge i_clk)
begin
    r_cs <= i_spi_cs;
end
reg [1:0] r_spi_clk_edge = 2b00; //SPI clk边沿检测
always @(posedge i_clk)
begin
    r_spi_clk_edge <= r_spi_clk_edge[0],i_spi_clk;
end //always
reg [clogb2(`SPI_FRAME_WIDTH-1)-1:0] r_spi_cnt = d0;
always @(posedge i_clk)
begin
    if (r_cs) //cs为高则归零
        r_spi_cnt <= d0;
    else if (r_spi_clk_edge == 2b10) //下降沿才计数
        r_spi_cnt <= r_spi_cnt + d1;
end
////指令锁存
reg [`SPI_INS_WIDTH-1:0] r_ins = d0;
always @(posedge i_clk)
begin
    if ((~r_cs) && (r_spi_clk_edge == 2b01)) //上升沿锁存数据
    begin
        if ((r_spi_cnt >= 0) && (r_spi_cnt <= `SPI_INS_WIDTH-1))
        `ifdef SPI_LINE                 //条件编译
            r_ins <= r_ins[`SPI_INS_WIDTH-2:0],io_spi_sdio;  
        `else
            r_ins <= r_ins[`SPI_INS_WIDTH-2:0],i_spi_mosi;  
        `endif 
    end 
end
////数值写入
reg [`SPI_FRAME_WIDTH-`SPI_INS_WIDTH-1:0] r_data_rx = d0;
always @(posedge i_clk)
begin
    if ((~r_cs) && (r_spi_clk_edge == 2b01)) //上升沿锁存数据
    begin
        if (r_spi_cnt >= `SPI_INS_WIDTH)
        `ifdef SPI_LINE
            r_data_rx <= r_data_rx[`SPI_FRAME_WIDTH-`SPI_INS_WIDTH-2:0],io_spi_sdio;
        `else
            r_data_rx <= r_data_rx[`SPI_FRAME_WIDTH-`SPI_INS_WIDTH-2:0],i_spi_mosi;   
        `endif
    end
end
////用户寄存器定义
reg [`SPI_FRAME_WIDTH-`SPI_INS_WIDTH-1:0] r_reg0 = d0;
reg [`SPI_FRAME_WIDTH-`SPI_INS_WIDTH-1:0] r_reg1 = d0;
reg [`SPI_FRAME_WIDTH-`SPI_INS_WIDTH-1:0] r_reg2 = d0;
reg [`SPI_FRAME_WIDTH-`SPI_INS_WIDTH-1:0] r_reg3 = d0;
////
always @(posedge i_clk,negedge i_rst_n)
begin
    if (~i_rst_n)
    begin
        r_reg0 <= d0;
        r_reg1 <= d0;
        r_reg2 <= d0;
        r_reg3 <= d0;



    end
    else if ((~r_ins[`SPI_INS_WIDTH-1]) && (r_spi_cnt == (`SPI_FRAME_WIDTH-1)) && (~r_cs) && (r_spi_clk_edge == 2b01))
    begin
    `ifdef SPI_LINE
        case (r_ins[`SPI_INS_WIDTH-2:0])
            d0:begin r_reg0 <= r_data_rx[`SPI_FRAME_WIDTH-`SPI_INS_WIDTH-2:0],io_spi_sdio; end
            d1:begin r_reg1 <= r_data_rx[`SPI_FRAME_WIDTH-`SPI_INS_WIDTH-2:0],io_spi_sdio; end
            d2:begin r_reg2 <= r_data_rx[`SPI_FRAME_WIDTH-`SPI_INS_WIDTH-2:0],io_spi_sdio; end
            d3:begin r_reg3 <= r_data_rx[`SPI_FRAME_WIDTH-`SPI_INS_WIDTH-2:0],io_spi_sdio; end




        endcase 
    `else
        case (r_ins[`SPI_INS_WIDTH-2:0])
            d0:begin r_reg0 <= r_data_rx[`SPI_FRAME_WIDTH-`SPI_INS_WIDTH-2:0],i_spi_mosi; end
            d1:begin r_reg1 <= r_data_rx[`SPI_FRAME_WIDTH-`SPI_INS_WIDTH-2:0],i_spi_mosi; end
            d2:begin r_reg2 <= r_data_rx[`SPI_FRAME_WIDTH-`SPI_INS_WIDTH-2:0],i_spi_mosi; end
            d3:begin r_reg3 <= r_data_rx[`SPI_FRAME_WIDTH-`SPI_INS_WIDTH-2:0],i_spi_mosi; end




        endcase 
    `endif 
    end

end
////寄存器值读出
reg [`SPI_FRAME_WIDTH-`SPI_INS_WIDTH-1:0] r_data_tx = d0;
always @(posedge i_clk)
begin
    if (r_ins[`SPI_INS_WIDTH-1] && (~r_cs) && (r_spi_clk_edge == 2b10))
    begin 
        if (r_spi_cnt == (`SPI_INS_WIDTH-1))
        begin
            case (r_ins[`SPI_INS_WIDTH-2:0])
                d0:begin r_data_tx <= r_reg0; end 
                d1:begin r_data_tx <= r_reg1; end 
                d2:begin r_data_tx <= r_reg2; end 
                d3:begin r_data_tx <= r_reg3; end 
    
            endcase 
        end
        else 
            r_data_tx <= r_data_tx[`SPI_FRAME_WIDTH-`SPI_INS_WIDTH-2:0],1b0;
    end 
end

////读取输出
`ifdef SPI_LINE
assign io_spi_sdio = (r_ins[`SPI_INS_WIDTH-1]) ? (((r_spi_cnt>=`SPI_INS_WIDTH) && (r_spi_cnt<`SPI_FRAME_WIDTH)) ? r_data_tx[`SPI_FRAME_WIDTH-`SPI_INS_WIDTH-1] : 1bz) : 1bz;
`else 
assign o_spi_miso = ((r_spi_cnt>=`SPI_INS_WIDTH) && (r_spi_cnt<`SPI_FRAME_WIDTH)) ? r_data_tx[`SPI_FRAME_WIDTH-`SPI_INS_WIDTH-1] : 1b0;
`endif

endmodule // end the spi_slave model

 

 

SPI master

spi master内部仅仅封装SPI驱动,写入值读出控制由上层控制,这部分逻辑很simple,不赘述。用户只需给入SPI帧及控制使能即可。

用户只需修改parameter参数:(1)单帧长。(2)指令长。(3)数据长。(4)工作时钟。(5)SPI clk。

实现不使用状态机,采用线性序列计数法。

//`define SPI_LINE  //是否是三线SPI
`timescale 1ns/1ps
module spi_master 
#(parameter p_spi_frame_width = 16, //SPI单帧长度
  parameter p_spi_ins_width = 8   , //指令长度
  parameter p_spi_data_width = 8    //读出数据长度
 )
(
    input                                i_clk             , //系统时钟
    input                                i_rst_n           ,
    input                                i_flag            , //检测到flag的上升沿则启动一次传输,一个时钟周期即可
   
    input     [p_spi_frame_width-1:0]    i_spi_data        ,
    output                               o_spi_cs          ,
    output                               o_spi_clk         ,

    `ifdef SPI_LINE                 //条件编译
    inout                                io_spi_sdio       ,          
    `else
    input                                i_spi_miso        , //SPI miso
    output                               o_spi_mosi        , //SPI mosi
    `endif 
    
    output                               o_transfer_done   , //单次传输完成
    output    [p_spi_data_width-1:0]     o_spi_data          //读取数据           
);
parameter p_clk_fre = 200; //XXM时钟频率
parameter p_spi_clk_fre = 0.5*1000; //SPI 时钟速率,表示1M
parameter p_clk_div = p_clk_fre * 1000/p_spi_clk_fre/2-1;
parameter p_spi_cnt_max = p_spi_frame_width*2-1;
parameter p_spi_ins_max = p_spi_ins_width*2-1;
//位宽计算函数
function integer clogb2 (input integer depth);
begin
    for (clogb2=0; depth>0; clogb2=clogb2+1) 
        depth = depth >>1;                          
end
endfunction
//把最大值赋值给线型,直接用p_clk_div仿真有问题,但实际上板是可以的
wire [clogb2(p_clk_div)-1:0] w_clk_div;
assign w_clk_div = p_clk_div;
////时钟分频
reg [clogb2(p_clk_div)-1:0] r_cnt_div = d0;
always @(posedge i_clk)
begin
    if (r_cnt_div == w_clk_div)
        r_cnt_div <= d0;
    else 
        r_cnt_div <= r_cnt_div + d1;
end //always
wire w_clk_en; //分频时钟使能
assign w_clk_en = (r_cnt_div == w_clk_div) ? 1b1 : 1b0;
reg [1:0] r_flag_edge = 2b00;
reg [clogb2(p_spi_cnt_max)-1:0] r_spi_cnt = d0;
always @(posedge i_clk) //flag边沿检测
begin
    r_flag_edge <= r_flag_edge[0],i_flag;
end
//flag信号展宽到低速时钟域
reg r_flag_enlarge = 1b0;
always @(posedge i_clk)
begin
    if (r_flag_edge == 2b01) //上升沿拉高
        r_flag_enlarge <= 1b1;
    else if (r_spi_cnt == p_spi_ins_max) //足够长的高电平才拉低
        r_flag_enlarge <= 1b0;
end
reg [1:0] r_flag_enlarge_edge = 2b00;
always @(posedge i_clk)
begin
    if (w_clk_en)
        r_flag_enlarge_edge <= r_flag_enlarge_edge[0],r_flag_enlarge;
end
reg r_cs = 1b1;
always @(posedge i_clk)
begin
    if (w_clk_en)
    begin
        if (r_flag_enlarge_edge == 2b01) //检测到需要进行SPI操作
            r_cs <= 1b0;
        else if (r_spi_cnt == p_spi_cnt_max) //计数到最大值表示一次SPI完成
            r_cs <= 1b1;
    end
end
always @(posedge i_clk)
begin
    if (w_clk_en)
    begin
        if(~r_cs) //在操作区间计数
            r_spi_cnt <= r_spi_cnt + d1;
        else 
            r_spi_cnt <= d0;
    end    
end
////数据传输段
reg [p_spi_frame_width-1:0] r_data = d0;
always @(posedge i_clk)
begin
    if (w_clk_en)
    begin
        if (r_flag_enlarge_edge == 2b01) //上升沿刷入
            r_data <= i_spi_data;
        else if (r_spi_cnt[0] == 1b1) //数据移动
            r_data <= r_data[p_spi_frame_width-2:0],1b1;
    end
end
////数据读取段
reg [p_spi_data_width-1:0] r_data_read = d0;
always @(posedge i_clk)
begin
    if (w_clk_en)
    begin
        if (i_spi_data[15] && (r_spi_cnt > p_spi_ins_max) && (r_spi_cnt[0] == 1b0)) //是读
        `ifdef SPI_LINE
            r_data_read <= r_data_read[p_spi_data_width-2:0],io_spi_sdio;
        `else
            r_data_read <= r_data_read[p_spi_data_width-2:0],i_spi_miso;
        `endif 
    end    
end
////SPI输出段
assign o_spi_cs = r_cs;
assign o_spi_clk = r_cs ? 1b0 : r_spi_cnt[0];
////SPI SDIO的输入输出切换
`ifdef SPI_LINE
assign io_spi_sdio = (i_spi_data[15]) ? (((r_spi_cnt >= d0) && (r_spi_cnt <= p_spi_ins_max)) ? r_data[p_spi_frame_width-1] : 1bz ) : r_data[p_spi_frame_width-1];
`else 
assign o_spi_mosi = r_data[p_spi_frame_width-1];
`endif 
assign o_transfer_done = ((~r_cs) && (r_spi_cnt == p_spi_cnt_max)) ? 1b1:1b0;
assign o_spi_data = r_data_read;

endmodule // end the spi_master model

 

仿真如下所示:写入四个寄存器值,再读出。

仿真代码如下:

`define TRANSFER_NUMBER 8 //操作数为4
`define DATA 8ha5
//`define SPI_LINE
timeunit 1ns;
timeprecision 1ps;
module top;
parameter p_sim_end_time = 1000000; //ns
logic l_clk = 1b0;
always #2.5 l_clk = ~l_clk;
////复位
logic l_rst_n  = 1b0;
initial begin
    #100 l_rst_n = 1b1;
end


wire io_sdio;
wire o_spi_cs;
wire o_spi_clk;
wire o_transfer_done;
wire [7:0] o_spi_data;
////多个数据操作模式
reg r_flag = 1b0;
reg [1:0] r_first_cnt = 2b00;
always @(posedge l_clk,negedge l_rst_n)
begin
    if (~l_rst_n)
        r_first_cnt <= 2b00;
    else if (r_first_cnt == 2d3)
        r_first_cnt <= r_first_cnt;
    else 
        r_first_cnt <= r_first_cnt + 2d1;
end
reg [1:0] r_transfer_done_edge = 2b00;
always @(posedge l_clk)
begin
    r_transfer_done_edge <= r_transfer_done_edge[0],o_transfer_done;
end
reg [3:0] r_transfer_cnt = 4d0;
always @(posedge l_clk)
begin
    if ((r_first_cnt == 2d2) && (r_transfer_cnt < `TRANSFER_NUMBER))
        r_flag <= 1b1;
    else if ((r_transfer_done_edge == 2b10) && (r_transfer_cnt < `TRANSFER_NUMBER-1))
        r_flag <= 1b1;
    else 
        r_flag <= 1b0;        
end
always @(posedge l_clk)
begin
    if (r_transfer_done_edge == 2b10)
        r_transfer_cnt <= r_transfer_cnt + d1;
end
reg [15:0] r_in_data  = 16d0;
always @(*)
begin
    if (~l_rst_n) //仿真不执行此段仿真会有问题
        r_in_data  = 16h0000;
    else 
    begin 
    case(r_transfer_cnt)
        4d0:begin  r_in_data  = 8h00,8h43; end 
        4d1:begin  r_in_data  = 16h0132; end 
        4d2:begin  r_in_data  = 16h0245; end 
        4d3:begin  r_in_data  = 16h0367; end 
        4d4:begin  r_in_data  = 16h8000; end 
        4d5:begin  r_in_data  = 16h8100; end 
        4d6:begin  r_in_data  = 16h8200; end 
        4d7:begin  r_in_data  = 16h8300; end 

        default:begin  r_in_data  = 16h0000; end
    endcase
    end 
end

wire w_spi_miso;
wire w_spi_mosi;

spi_master inst_spi_master (
    .i_clk             (l_clk),
    .i_rst_n           (),
    .i_flag            (r_flag),
    .i_spi_data        (r_in_data),
    .o_spi_cs          (o_spi_cs),
    .o_spi_clk         (o_spi_clk),
    `ifdef SPI_LINE
    .io_spi_sdio       (io_sdio),
    `else
    .i_spi_miso        (w_spi_miso),
    .o_spi_mosi        (w_spi_mosi),
    `endif
    .o_transfer_done   (o_transfer_done),
    .o_spi_data        (o_spi_data)
    
);

spi_slave  inst_spi_slave (
    .i_clk                            (l_clk),
    .i_rst_n                          (l_rst_n),

    .i_spi_clk                        (o_spi_clk),
    .i_spi_cs                         (o_spi_cs),
    `ifdef SPI_LINE
    .io_spi_sdio                      (io_sdio)
    `else
    .i_spi_mosi                      (w_spi_mosi),
    .o_spi_miso                      (w_spi_miso)
    `endif

);

initial begin
    #p_sim_end_time $stop;
end

    
endmodule

 

三线SPI:

 技术图片

四线SPI:

技术图片

可以看到读写是一致的,验证通过。

 

 以上。

 

以上是关于对SPI进行参数化结构设计的主要内容,如果未能解决你的问题,请参考以下文章

设计模式之命令模式

不懂Java SPI机制,怎么进大厂

质子磁力仪传感器线圈参数的研究与设计

AS5047P磁编码器应用设计大全解:硬件电路设计SPI通信时序逻辑波形分析注意事项

ARM与FPGA通过spi通信设计1.spi基础知识

2018第18周总结