CF Gym102028G Shortest Paths on Random Forests

Posted smyjr

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了CF Gym102028G Shortest Paths on Random Forests相关的知识,希望对你有一定的参考价值。

传送门

这题要求的期望,就是总权值(所有不在同一个连通块点对的贡献+同一连通块点对的贡献)/总方案(森林个数)

先求森林个数,森林是由一堆树组成的,而根据purfer序列,一棵\(n\)个点的有标号的树的个数为\(n^n-2\),然后因为点有标号所以可以考虑EGF,设树的EGF为\(F(x)\),那么森林的生成函数为\(e^F(x)\)

然后是不在同一个连通块点对的贡献,这等于不在同一个连通块点对个数\(*m^2\),然后不在同一个连通块点对个数又等于总点对个数\(-\)在同一个连通块点对个数.考虑枚举一个连通块的大小,然后这个大小为\(n\)的连通块的贡献为\(n^n-2\binomn2\),然后还要乘上这个连通块出现多少次,那剩下的部分就是一个森林,所以把这个搞成EGF然后卷上之前的森林的生成函数就行了

最后是同一连通块点对的贡献,平方有点难处理,考虑转化一下\[\beginaligned\sum_i=1^n\sum_j=i+1^ndis(i,j)^2&=\sum_i=1^n\sum_j=i+1^n(\sum_(x,y)\in (i,j)1)^2\\&=\sum_i=1^n\sum_j=i+1^n\sum_(x1,y1)\in (i,j)\sum_(x2,y2)\in (i,j)1\endaligned\]所以也就是枚举两条在路径上的边,然后加起来.我们交换枚举顺序,就先枚举两条边,然后考虑多少条路径同时包含这两条边.如果这两条边是同一条,那么就会把所在连通块分割成两个连通块,否则会分成三个连通块.对于前者,枚举两个连通块大小\(sz_1,sz_2\),然后枚举路径的两个起点,贡献为\(sz_1sz_2\),再枚举这两条边和两个连通块的交点,贡献为\(sz_1sz_2\),所以总贡献为\((sz_1sz_2)^2\).然后三个连通块贡献也类似,也就是\((sz_1sz_2sz_3)^2\).和上面一样,把这个搞成EGF然后卷上之前的森林的生成函数.不过注意三个连通块的情况,我们枚举的两条边是有先后顺序的,所以要\(*2\);然后计算的时候会把\((i,j)\)贡献和\((j,i)\)贡献都算进来,所以这一部分贡献都要\(/2\)

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<vector>
#include<cmath>
#include<ctime>
#include<queue>
#include<map>
#include<set>
#define LL long long
#define db double

using namespace std;
const int N=1e6+10,M=(1<<20)+10,mod=998244353,inv2=499122177;
LL rd()

    LL x=0,w=1;char ch=0;
    while(ch<'0'||ch>'9')if(ch=='-') w=-1;ch=getchar();
    while(ch>='0'&&ch<='9')x=(x<<3)+(x<<1)+(ch^48);ch=getchar();
    return x*w;

namespace ct2

    int fpow(int a,int b)int an=1;while(b)if(b&1) an=1ll*an*a%mod;a=1ll*a*a%mod,b>>=1; return an;
    int ginv(int a)return fpow(a,mod-2);
    int rdr[M],inv[M],p1[M],p2[M],p3[M],p4[M],p5[M];
    void ntt(int *a,int n,bool op)
    
        int l=0,x,y;
        while((1<<l)<n) ++l;
        for(int i=0;i<n;++i)
        
            rdr[i]=(rdr[i>>1]>>1)|((i&1)<<(l-1));
            if(i<rdr[i]) swap(a[i],a[rdr[i]]);
        
        for(int i=1;i<n;i<<=1)
        
            int ww=fpow(op?3:332748118,(mod-1)/(i<<1));
            for(int j=0;j<n;j+=i<<1)
                for(int k=0,w=1;k<i;++k,w=1ll*w*ww%mod)
                    x=a[j+k],y=1ll*a[j+k+i]*w%mod,a[j+k]=(x+y)%mod,a[j+k+i]=(x-y+mod)%mod;
        
        if(!op) for(int i=0,w=ginv(n);i<n;++i) a[i]=1ll*a[i]*w%mod;
    
    void polyder(int *aa,int *bb,int n)
    
        for(int i=0;i<n-1;++i) bb[i]=1ll*aa[i+1]*(i+1)%mod;
        bb[n-1]=bb[n]=0;
    
    void polying(int *aa,int *bb,int n)
    
        for(int i=1;i<n;++i) bb[i]=1ll*aa[i-1]*inv[i]%mod;
        bb[0]=0;
    
    void polyinv(int *aa,int *bb,int n)
    
        if(n==1)bb[0]=ginv(aa[0]);return;
        polyinv(aa,bb,n>>1);
        for(int i=0;i<n;++i) p1[i]=aa[i],p2[i]=bb[i];
        ntt(p1,n<<1,1),ntt(p2,n<<1,1);
        for(int i=0;i<n<<1;++i) p1[i]=1ll*p1[i]*p2[i]%mod*p2[i]%mod;
        ntt(p1,n<<1,0);
        for(int i=0;i<n;++i) bb[i]=((bb[i]+bb[i])%mod-p1[i]+mod)%mod;
        for(int i=0;i<n<<1;++i) p1[i]=p2[i]=0;
    
    void polyln(int *aa,int *bb,int n)
    
        polyder(aa,p3,n),polyinv(aa,p4,n);
        ntt(p3,n<<1,1),ntt(p4,n<<1,1);
        for(int i=0;i<n<<1;++i) p3[i]=1ll*p3[i]*p4[i]%mod;
        ntt(p3,n<<1,0);
        polying(p3,bb,n);
        for(int i=0;i<n<<1;++i) p3[i]=p4[i]=0;
    
    void polyexp(int *aa,int *bb,int n)
    
        if(n==1)bb[0]=1;return;
        polyexp(aa,bb,n>>1);
        polyln(bb,p5,n);
        for(int i=0;i<n;++i) p1[i]=bb[i],p5[i]=(-p5[i]+aa[i]+mod)%mod;
        p5[0]=(p5[0]+1)%mod;
        ntt(p1,n<<1,1),ntt(p5,n<<1,1);
        for(int i=0;i<n<<1;++i) p1[i]=1ll*p1[i]*p5[i]%mod;
        ntt(p1,n<<1,0);
        for(int i=0;i<n;++i) bb[i]=p1[i];
        for(int i=0;i<n<<1;++i) p1[i]=p5[i]=0;
    
    int fac[N],iac[N],aa[M],f[M],dotf[M],g[M],h[M],h2[M],h3[M],hh[M];
    int C(int n,int m)return m<0||n<m?0:1ll*fac[n]*iac[m]%mod*iac[n-m]%mod;
    void wk()
    
        int nn=200010,len=1<<18;
        inv[0]=inv[1]=1;
        for(int i=2;i<=nn;++i) inv[i]=(mod-1ll*(mod/i)*inv[mod%i]%mod)%mod;
        fac[0]=1;
        for(int i=1;i<=nn;++i) fac[i]=1ll*fac[i-1]*i%mod;
        iac[nn]=ginv(fac[nn]);
        for(int i=nn;i;--i) iac[i-1]=1ll*iac[i]*i%mod;
        aa[1]=1;
        for(int i=2;i<=nn;++i) aa[i]=1ll*fpow(i,i-2)*iac[i]%mod;
        polyexp(aa,f,len);
        f[0]=1;
        len<<=1;
        for(int i=0;i<=nn;++i) dotf[i]=f[i];
        ntt(dotf,len,1);
        for(int i=2;i<=nn;++i) g[i]=1ll*C(i,2)*fpow(i,i-2)%mod*iac[i]%mod;
        ntt(g,len,1);
        for(int i=0;i<len;++i) g[i]=1ll*g[i]*dotf[i]%mod;
        ntt(g,len,0);
        h[1]=1;
        for(int i=2;i<=nn;++i) h[i]=1ll*i*i%mod*fpow(i,i-2)%mod*iac[i]%mod;
        ntt(h,len,1);
        for(int i=0;i<len;++i) h2[i]=1ll*h[i]*h[i]%mod;
        ntt(h2,len,0);
        for(int i=1;i<=nn;++i) hh[i]=1ll*h2[i]*inv2%mod;
        for(int i=nn+1;i<len;++i) h2[i]=0;
        ntt(h2,len,1);
        for(int i=0;i<len;++i) h3[i]=1ll*h2[i]*h[i]%mod;
        ntt(h3,len,0);
        for(int i=1;i<=nn;++i) hh[i]=(hh[i]+h3[i])%mod;
        ntt(hh,len,1);
        for(int i=0;i<len;++i) hh[i]=1ll*hh[i]*dotf[i]%mod;
        ntt(hh,len,0);
        for(int i=1;i<=nn;++i)
        
            f[i]=1ll*f[i]*fac[i]%mod;
            g[i]=1ll*g[i]*fac[i]%mod;
            hh[i]=1ll*hh[i]*fac[i]%mod;
        
        int T=rd();
        while(T--)
        
            int n=rd(),m=rd();
            m=1ll*m*m%mod;
            int ans=(1ll*m*(1ll*f[n]*C(n,2)%mod-g[n]+mod)%mod+1ll*hh[n])%mod;
            ans=1ll*ans*ginv(f[n])%mod;
            printf("%d\n",ans);
        
    


int main()

    ct2::wk();
    return 0;

以上是关于CF Gym102028G Shortest Paths on Random Forests的主要内容,如果未能解决你的问题,请参考以下文章

CF1051F The Shortest Statement

CF1051F The Shortest Statement

CF1051F The Shortest Statement

Shortest Path with Obstacle--曼哈顿距离(cf补题)

Shortest Path with Obstacle--曼哈顿距离(cf补题)

Shortest Path with Obstacle--曼哈顿距离(cf补题)