tensorflow和pytorch模型之间转换
Posted qbdj
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了tensorflow和pytorch模型之间转换相关的知识,希望对你有一定的参考价值。
参考链接:
https://github.com/bermanmaxim/jaccardSegment/blob/master/ckpt_to_dd.py
一. tensorflow模型转pytorch模型
import tensorflow as tf import deepdish as dd import argparse import os import numpy as np def tr(v): # tensorflow weights to pytorch weights if v.ndim == 4: return np.ascontiguousarray(v.transpose(3,2,0,1)) elif v.ndim == 2: return np.ascontiguousarray(v.transpose()) return v def read_ckpt(ckpt): # https://github.com/tensorflow/tensorflow/issues/1823 reader = tf.train.NewCheckpointReader(ckpt) weights = n: reader.get_tensor(n) for (n, _) in reader.get_variable_to_shape_map().items() pyweights = k: tr(v) for (k, v) in weights.items() return pyweights if __name__ == ‘__main__‘: parser = argparse.ArgumentParser(description="Converts ckpt weights to deepdish hdf5") parser.add_argument("infile", type=str, help="Path to the ckpt.") # ***model.ckpt-22177*** parser.add_argument("outfile", type=str, nargs=‘?‘, default=‘‘, help="Output file (inferred if missing).") args = parser.parse_args() if args.outfile == ‘‘: args.outfile = os.path.splitext(args.infile)[0] + ‘.h5‘ outdir = os.path.dirname(args.outfile) if not os.path.exists(outdir): os.makedirs(outdir) weights = read_ckpt(args.infile) dd.io.save(args.outfile, weights)
1.运行上述代码后会得到model.h5模型,如下:
备注:保持tensorflow和pytorch使用的python版本一致
2.使用:在pytorch内加载改模型:
这里假设网络保存时参数命名一致
net = ... import torch import deepdish as dd net = resnet50(..) model_dict = net.state_dict() #先将参数值numpy转换为tensor形式 pretrained_dict = = dd.io.load(‘./model.h5‘) new_pre_dict = for k,v in pretrained_dict.items(): new_pre_dict[k] = torch.Tensor(v) #更新 model_dict.update(new_pre_dict) #加载 net.load_state_dict(model_dict)
二. pytorch转tensorflow(待续。。)
原文:https://blog.csdn.net/weixin_42699651/article/details/88932670
以上是关于tensorflow和pytorch模型之间转换的主要内容,如果未能解决你的问题,请参考以下文章
在将TensorFlow模型转换为Pytorch时出现大小不匹配的错误。
转载微软Facebook联手发布AI生态系统,CNTK+Caffe2+PyTorch挑战TensorFlow
比较 Conv2D 与 Tensorflow 和 PyTorch 之间的填充