比较 Conv2D 与 Tensorflow 和 PyTorch 之间的填充
Posted
技术标签:
【中文标题】比较 Conv2D 与 Tensorflow 和 PyTorch 之间的填充【英文标题】:Comparing Conv2D with padding between Tensorflow and PyTorch 【发布时间】:2019-03-29 06:33:27 【问题描述】:我正在尝试将从 Tensorflow 模型中保存的权重导入 PyTorch。到目前为止,结果非常相似。当模型使用stride=2
调用conv2d
时,我遇到了障碍。
为了验证不匹配,我在 TF 和 PyTorch 之间进行了非常简单的比较。首先,我将conv2d
与stride=1
进行比较。
import tensorflow as tf
import numpy as np
import torch
import torch.nn.functional as F
np.random.seed(0)
sess = tf.Session()
# Create random weights and input
weights = torch.empty(3, 3, 3, 8)
torch.nn.init.constant_(weights, 5e-2)
x = np.random.randn(1, 3, 10, 10)
weights_tf = tf.convert_to_tensor(weights.numpy(), dtype=tf.float32)
# PyTorch adopts [outputC, inputC, kH, kW]
weights_torch = torch.Tensor(weights.permute((3, 2, 0, 1)))
# Tensorflow defaults to NHWC
x_tf = tf.convert_to_tensor(x.transpose((0, 2, 3, 1)), dtype=tf.float32)
x_torch = torch.Tensor(x)
# TF Conv2D
tf_conv2d = tf.nn.conv2d(x_tf,
weights_tf,
strides=[1, 1, 1, 1],
padding="SAME")
# PyTorch Conv2D
torch_conv2d = F.conv2d(x_torch, weights_torch, padding=1, stride=1)
sess.run(tf.global_variables_initializer())
tf_result = sess.run(tf_conv2d)
diff = np.mean(np.abs(tf_result.transpose((0, 3, 1, 2)) - torch_conv2d.detach().numpy()))
print('Mean of Abs Diff: 0'.format(diff))
本次执行的结果是:
Mean of Abs Diff: 2.0443112092038973e-08
当我将stride
更改为 2 时,结果开始变化。
# TF Conv2D
tf_conv2d = tf.nn.conv2d(x_tf,
weights_tf,
strides=[1, 2, 2, 1],
padding="SAME")
# PyTorch Conv2D
torch_conv2d = F.conv2d(x_torch, weights_torch, padding=1, stride=2)
本次执行的结果是:
Mean of Abs Diff: 0.2104552686214447
根据 PyTorch 文档,conv2d
uses zero-padding 由 padding
参数定义。因此,在我的示例中,输入的左侧、顶部、右侧和底部都添加了零。
如果 PyTorch 只是根据输入参数在两侧添加填充,在 Tensorflow 中应该很容易复制。
# Manually add padding - consistent with PyTorch
paddings = tf.constant([[0, 0], [1, 1], [1, 1], [0, 0]])
x_tf = tf.convert_to_tensor(x.transpose((0, 2, 3, 1)), dtype=tf.float32)
x_tf = tf.pad(x_tf, paddings, "CONSTANT")
# TF Conv2D
tf_conv2d = tf.nn.conv2d(x_tf,
weights_tf,
strides=[1, 2, 2, 1],
padding="VALID")
这个比较的结果是:
Mean of Abs Diff: 1.6035047067930464e-08
这告诉我的是,如果我能够以某种方式将默认填充行为从 Tensorflow 复制到 PyTorch 中,那么我的结果将是相似的。
This question 检查了 TensorFlow 中的填充行为。 TF documentation explains how padding is added for "SAME" convolutions.我在写这个问题时发现了这些链接。
现在我知道了 TensorFlow 的填充策略,我可以在 PyTorch 中实现它了。
【问题讨论】:
tensorflowSAME
填充可能会在右侧填充比左侧更多的像素。因此,对于 10x10 的图像,内核为 3x3,步幅为 2,tensorflow 只会在右侧和底部填充一列,这与 torch padding=1 不同。
【参考方案1】:
为了复制该行为,填充大小按照 Tensorflow 文档中的说明进行计算。在这里,我通过设置 stride=2
并填充 PyTorch 输入来测试填充行为。
import tensorflow as tf
import numpy as np
import torch
import torch.nn.functional as F
np.random.seed(0)
sess = tf.Session()
# Create random weights and input
weights = torch.empty(3, 3, 3, 8)
torch.nn.init.constant_(weights, 5e-2)
x = np.random.randn(1, 3, 10, 10)
weights_tf = tf.convert_to_tensor(weights.numpy(), dtype=tf.float32)
weights_torch = torch.Tensor(weights.permute((3, 2, 0, 1)))
# Tensorflow padding behavior. Assuming that kH == kW to keep this simple.
stride = 2
if x.shape[2] % stride == 0:
pad = max(weights.shape[0] - stride, 0)
else:
pad = max(weights.shape[0] - (x.shape[2] % stride), 0)
if pad % 2 == 0:
pad_val = pad // 2
padding = (pad_val, pad_val, pad_val, pad_val)
else:
pad_val_start = pad // 2
pad_val_end = pad - pad_val_start
padding = (pad_val_start, pad_val_end, pad_val_start, pad_val_end)
x_tf = tf.convert_to_tensor(x.transpose((0, 2, 3, 1)), dtype=tf.float32)
x_torch = torch.Tensor(x)
x_torch = F.pad(x_torch, padding, "constant", 0)
# TF Conv2D
tf_conv2d = tf.nn.conv2d(x_tf,
weights_tf,
strides=[1, stride, stride, 1],
padding="SAME")
# PyTorch Conv2D
torch_conv2d = F.conv2d(x_torch, weights_torch, padding=0, stride=stride)
sess.run(tf.global_variables_initializer())
tf_result = sess.run(tf_conv2d)
diff = np.mean(np.abs(tf_result.transpose((0, 3, 1, 2)) - torch_conv2d.detach().numpy()))
print('Mean of Abs Diff: 0'.format(diff))
输出是:
Mean of Abs Diff: 2.2477470551507395e-08
当我开始写这个问题时,我不太清楚为什么会发生这种情况,但是阅读一下很快就澄清了这一点。我希望这个例子可以帮助其他人。
【讨论】:
以上是关于比较 Conv2D 与 Tensorflow 和 PyTorch 之间的填充的主要内容,如果未能解决你的问题,请参考以下文章
TensorflowMac上Tensorflow卷积与反卷积
TensorflowMac上Tensorflow卷积与反卷积
TensorFlow理解tf.nn.conv2d方法 ( 附代码详解注释 )