吴裕雄 python 机器学习——模型选择损失函数模型
Posted tszr
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了吴裕雄 python 机器学习——模型选择损失函数模型相关的知识,希望对你有一定的参考价值。
from sklearn.metrics import zero_one_loss,log_loss def test_zero_one_loss(): y_true=[1,1,1,1,1,0,0,0,0,0] y_pred=[0,0,0,1,1,1,1,1,0,0] print("zero_one_loss<fraction>:",zero_one_loss(y_true,y_pred,normalize=True)) print("zero_one_loss<num>:",zero_one_loss(y_true,y_pred,normalize=False)) test_zero_one_loss()
def test_log_loss(): y_true=[1, 1, 1, 0, 0, 0] y_pred=[[0.1, 0.9], [0.2, 0.8], [0.3, 0.7], [0.7, 0.3], [0.8, 0.2], [0.9, 0.1]] print("log_loss<average>:",log_loss(y_true,y_pred,normalize=True)) print("log_loss<total>:",log_loss(y_true,y_pred,normalize=False)) test_log_loss()
以上是关于吴裕雄 python 机器学习——模型选择损失函数模型的主要内容,如果未能解决你的问题,请参考以下文章
吴裕雄 python 机器学习——模型选择参数优化暴力搜索寻优GridSearchCV模型
吴裕雄 python 机器学习——模型选择参数优化随机搜索寻优RandomizedSearchCV模型
吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型