使用pandassklearn等外部库进行iris数据的分类和绘图,并计算正确率

Posted hurt

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了使用pandassklearn等外部库进行iris数据的分类和绘图,并计算正确率相关的知识,希望对你有一定的参考价值。

技术图片
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
from sklearn.neighbors import KNeighborsClassifier
import pandas as pd
import numpy as np
from pandas.plotting import scatter_matrix
import matplotlib.pyplot as plt
data = load_iris()
X_train, X_test, Y_train, Y_test = train_test_split(
    data.data, data.target, random_state=0)
cheng = pd.DataFrame(data.data, columns=data.feature_names)
scatter_matrix(
    cheng,
    figsize=(
        10,
        10),
    c=data.target,
    alpha=0.8,
    s=20,
    hist_kwds={
        bins: 30})
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train, Y_train)
prelist = knn.predict(X_test)
true_values = np.mean(prelist == Y_test)
print(true_values)
plt.show()
显示代码内容

 

以上是关于使用pandassklearn等外部库进行iris数据的分类和绘图,并计算正确率的主要内容,如果未能解决你的问题,请参考以下文章

Numpy与PandasSklearn中one-hot快速编码方法

用外部库实现knn分类算法,并计算正确率

Weka 中的不同分类结果:GUI vs Java 库

KNN-iris数据集实现

如何使用R进行数据展现?且看使用iris数据可视化实例

使用KNN对iris数据集进行分类——python