目标检测比赛---Google AI Open Images - Object Detection Track

Posted allen-rg

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了目标检测比赛---Google AI Open Images - Object Detection Track相关的知识,希望对你有一定的参考价值。

https://www.kaggle.com/c/google-ai-open-images-object-detection-track#Evaluation

 

Submissions are evaluated by computing mean Average Precision (AP), modified to take into account the annotation process of Open Images dataset (mean is taken over per-class APs). The metric is described on the Open Images Challenge website.

The final mAP is computed as the average AP over the 500 classes. The participants will be ranked on this final metric.

Kaggle‘s production code in C# can be viewed here. The metric is also implemented as a part of Tensorflow Object Detection API. See this Tutorial on running the evaluation in Python.

Kernel Submissions

You can make submissions directly from Kaggle Kernels. By adding your teammates as collaborators on a kernel, you can share and edit code privately with them.

Submission File

For each image in the test set, you must predict a list of boxes describing objects in the image. Each box is described as

ImageID,PredictionString
ImageID,{Label Confidence XMin YMin XMax YMax},{...}




tensorflow 自带评测函数----https://github.com/tensorflow/models/tree/master/research/object_detection
评测函数介绍: https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/challenge_evaluation.md


以上是关于目标检测比赛---Google AI Open Images - Object Detection Track的主要内容,如果未能解决你的问题,请参考以下文章

Facebook狂撒20万美元,悬赏用AI检测P图盗版问题

目标检测比赛中的 trick

你来画,AI猜

AI比赛经验分享 - 总目录

AI人工智能-目标检测模型一览

了解CV和RoboMaster视觉组比赛中的CV算法(中)目标检测的常见概念和术语