知乎高颜值图片爬取

Posted li1992

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了知乎高颜值图片爬取相关的知识,希望对你有一定的参考价值。

导入相关包

import time
import pydash
import base64
import requests
from lxml import etree
from aip import AipFace
from pathlib import Path

百度云 人脸检测 申请信息

#唯一必须填的信息就这三行
APP_ID = "xxxxxxxx"
API_KEY = "xxxxxxxxxxxxxxxx"
SECRET_KEY = "xxxxxxxxxxxxxxxx"
# 过滤颜值阈值,存储空间大的请随意
BEAUTY_THRESHOLD = 55
AUTHORIZATION = "oauth c3cef7c66a1843f8b3a9e6a1e3160e20"
# 如果权限错误,浏览器中打开知乎,在开发者工具复制一个,无需登录
# 建议最好换一个,因为不知道知乎的反爬虫策略,如果太多人用同一个,可能会影响程序运行

以下皆无需改动

# 每次请求知乎的讨论列表长度,不建议设定太长,注意节操
LIMIT = 5
# 这是话题『美女』的 ID,其是『颜值』(20013528)的父话题
SOURCE = "19552207"

爬虫假装下正常浏览器请求

USER_AGENT = "Mozilla/5.0 (Windows NT 5.1) AppleWebKit/534.55.3 (Khtml, like Gecko) Version/5.1.5 Safari/534.55.3"
REFERER = "https://www.zhihu.com/topic/%s/newest" % SOURCE
# 某话题下讨论列表请求 url
BASE_URL = "https://www.zhihu.com/api/v4/topics/%s/feeds/timeline_activity"
# 初始请求 url 附带的请求参数
URL_QUERY = "?include=data%5B%3F%28target.type%3Dtopic_sticky_module%29%5D.target.data%5B%3F%28target.type%3Danswer%29%5D.target.content%2Crelationship.is_authorized%2Cis_author%2Cvoting%2Cis_thanked%2Cis_nothelp%3Bdata%5B%3F%28target.type%3Dtopic_sticky_module%29%5D.target.data%5B%3F%28target.type%3Danswer%29%5D.target.is_normal%2Ccomment_count%2Cvoteup_count%2Ccontent%2Crelevant_info%2Cexcerpt.author.badge%5B%3F%28type%3Dbest_answerer%29%5D.topics%3Bdata%5B%3F%28target.type%3Dtopic_sticky_module%29%5D.target.data%5B%3F%28target.type%3Darticle%29%5D.target.content%2Cvoteup_count%2Ccomment_count%2Cvoting%2Cauthor.badge%5B%3F%28type%3Dbest_answerer%29%5D.topics%3Bdata%5B%3F%28target.type%3Dtopic_sticky_module%29%5D.target.data%5B%3F%28target.type%3Dpeople%29%5D.target.answer_count%2Carticles_count%2Cgender%2Cfollower_count%2Cis_followed%2Cis_following%2Cbadge%5B%3F%28type%3Dbest_answerer%29%5D.topics%3Bdata%5B%3F%28target.type%3Danswer%29%5D.target.content%2Crelationship.is_authorized%2Cis_author%2Cvoting%2Cis_thanked%2Cis_nothelp%3Bdata%5B%3F%28target.type%3Danswer%29%5D.target.author.badge%5B%3F%28type%3Dbest_answerer%29%5D.topics%3Bdata%5B%3F%28target.type%3Darticle%29%5D.target.content%2Cauthor.badge%5B%3F%28type%3Dbest_answerer%29%5D.topics%3Bdata%5B%3F%28target.type%3Dquestion%29%5D.target.comment_count&limit=" + str(
    LIMIT)

HEADERS = {
    "User-Agent": USER_AGENT,
    "Referer": REFERER,
    "authorization": AUTHORIZATION
}

指定 url,获取对应原始内容 / 图片

def fetch_image(url):
    try:
        response = requests.get(url, headers=HEADERS)
    except Exception as e:
        raise e
    return response.content

指定 url,获取对应 JSON 返回 / 话题列表

def fetch_activities(url):
    try:
        response = requests.get(url, headers=HEADERS)
    except Exception as e:
        raise e
    return response.json()

处理返回的话题列表

def parser_activities(datums, face_detective):
    for data in datums["data"]:
        target = data["target"]
        if "content" not in target or "question" not in target or "author" not in target:
            continue
        html = etree.HTML(target["content"])
        seq = 0
        title = target["question"]["title"]
        author = target["author"]["name"]
        images = html.xpath("//img/@src")
        for image in images:
            if not image.startswith("http"):
                continue
            image_data = fetch_image(image)
            score = face_detective(image_data)
            if not score:
                continue
            name = "{}--{}--{}--{}.jpg".format(score, author, title, seq)
            seq = seq + 1
            path = Path(__file__).parent.joinpath("image").joinpath(name)
            try:
                f = open(path, "wb")
                f.write(image_data)
                f.flush()
                f.close()
                print(path)
                time.sleep(2)
            except Exception as e:
                continue

    if not datums["paging"]["is_end"]:
        return datums["paging"]["next"]
    else:
        return None

初始化颜值检测工具

def init_detective(app_id, api_key, secret_key):
    client = AipFace(app_id, api_key, secret_key)
    options = {"face_field""age,gender,beauty,qualities"}

    def detective(image):
        image = str(base64.b64encode(image), "utf-8")
        response = client.detect(str(image), "BASE64", options)
        response = response.get("result")
        if not response:
            return
        if (not response) or (response["face_num"] == 0):
            return
        face_list = response["face_list"]
        if pydash.get(face_list, "0.face_probability") < 0.6:
            return
        if pydash.get(face_list, "0.beauty") < BEAUTY_THRESHOLD:
            return
        if pydash.get(face_list, "0.gender.type") != "female":
            return
        score = pydash.get(face_list, "0.beauty")
        return score

    return detective

程序入口

def main():
    face_detective = init_detective(APP_ID, API_KEY, SECRET_KEY)
    url = BASE_URL % SOURCE + URL_QUERY
    while url is not None:
        datums = fetch_activities(url)
        url = parser_activities(datums, face_detective)
        time.sleep(5)

if __name__ == ‘__main__‘:
    main()

更多详情请参考文章出处知乎高颜值图片爬取

以上是关于知乎高颜值图片爬取的主要内容,如果未能解决你的问题,请参考以下文章

看了这份《阿里前端代码规范》,你也能写出“高颜值”代码

Dcat Admin v1.0.0 发布 - 使用很少的代码快速构建一个功能完善的高颜值后台系统

还在从零开始搭建项目?推荐一款高颜值的前后端分离脚手架!

不用写一行代码,这款 "高颜值" 可视化神器,国庆值得try一try!

高颜值的28岁健身美女Cassandra Martin

PrettyZoo-高颜值的zookeeper可视化工具