理论python使用celery异步处理请求
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了理论python使用celery异步处理请求相关的知识,希望对你有一定的参考价值。
Flask中使用celery队列处理执行时间较长的请求。
一. 安装celery
pip install celery flask redis
二. celery简介
Celery是个异步分布式任务队列
通过Celery在后台跑任务并不像线程那么简单,但是用Celery的话,能够是应用有较好的扩展性,因为Celery是个分布式架构,下面介绍Celery的三个核心组件:
1. 生产者(Celery client): 生产者发送消息,在Flask上工作时,生产者在Flask应用内运行
2. 消费者(Celert worker): 消费者用于处理后台任务。消费者可以是本地的也可以是远程的。我们可以在运行Flask的server上运行一个单一的消费者,当业务量上涨之后再去添加更多的消费者
3. 消息传递着(Celery broker): 生产者和消费者的信息交互使用的是消息队列,Celery支持若干方式的消息队列,其中最长用的是RabbitMQ和Redis, 我们在使用过程中使用的Redis
三. redis配置与使用
redis配置文件/etc/redis.conf
1.设置为后台启动
daemonize yes
2.redis端口设置
port 6379 # default prot
3.日志文件
logfile /home/liuyadong/work/log/redis.log
4.数据保存文件
dir /home/liuyadong/data/redisData
通过下面命令指定配置文件启动redis:
redis-server /etc/redis.conf
通过下面命令测试是否启动成功:
redis-cli -p 6379
下面这样表示成功(进入了命令行模式):
redis 127.0.0.1:6379>
查看启动端口:
sudo netstat -ntlp | grep 6379
tcp 0 0 127.0.0.1:6379 0.0.0.0:* LISTEN 49380/redis-server
四. celery使用简介
1.Choosing a broker
最常用的broker包括: RabbitMQ 和 Redis, 我们使用Redis, Redis的安装及启动等查看第二部分
2.intall celery
pip install celery
3.Application
使用celery的第一步是创建一个application, 通常叫做‘app‘。具体的创建一个app的代码如下:
$ cat tasks.py
#!/usr/bin/env python
from celery import Celery
app = Celery(‘tasks‘, broker=‘redis://localhost‘)
@app.tasks
def add(x, y):
return x + y
Note: Celery第一个参数必须是当前module的模拟购置,本次实例中为:tasks
4.Running the celery worker server
$ celery -A tasks worker --loglevel=info
5.Calling the tasks
可以通过delay()或者apply_sync()方法来调用一个task
>>> from tasks import add
>>> add.delay(4, 4)
6. Keeping Results
我们可以将task的执行状态保存起来,可以保存到broker中, 可以通过CELERY_RESULT_BACKEND字段来设置保存结果。
也可以通过Celery的backend参数来设置
app.Celery(‘tasks‘, broker=‘redis://localhost‘, backend=‘redis://localhost‘)
>>> result = add.delay(4, 4)
可以通过ready()方法来判断程序执行是否完成,执行完成返回True.
>>> result.ready()
False
下面是AsyncResult对象的其他调用方法介绍:
1) AsyncResult.get(timeout=None, propagate=True, interval=0.5, no_ack=True, follow_parents=True)
timeout : 设置一个等待的预操作时间,单位是s, 方法返回执行结果
propagate : 如果task执行失败,则Re-taise Exception
interval : 等待一定时间重新执行操作,如果使用amqp来存储backend则此参数无效
no_ack : Enable amqp no ack (automatically acknowledge message)
If this is False then the message will not be acked
follow_parents : Reraise any exception raised by parent task
2) AsyncResult.state 或 status属性
方法返回当前task的执行状态,返回值包括下面多种情况:
PENDING: task正在等待执行
STARTED: task已经开始执行了
RETRY : task重新执行了,这可能是由于第一次执行失败引起的
FAILURE: task执行引发了异常,并且结果的属性当中包括了异常是由哪个task引起的
SUCCESS: task执行成功,结果的属性当中包括执行结果
3) AsyncResult.success()
如果返回True,则表示task执行成功
4) AsyncResult.traceback()
得到一个执行失败的task的traceback
7.Configuration celert
默认的配置对于大多数用户来说已经足够好了,但是我们仍有许多想让celery按照我们的想法去work,通过configuration实现是一个好的方式。 configutation可以通过app设置,也可以通过一个单独的模块进行设置。
比如,通过app设置CELERY_TASK_SERIALIZER属性:app.conf.CELERY_TASK_SERIALIZER = ‘json‘
如果你一次性有许多需要配置,则可以通过update()方法实现:
app.conf.update(
CELERY_TASK_SERIALIZER=‘json‘,
CELERY_ACCEPT_CONTENT=[‘json‘], # Ignore other content
CELERY_RESULT_SERIALIZER=‘json‘,
CELERY_TIMEZONE=‘Europe/Oslo‘,
CELERY_ENABLE_UTC=True,
)
你也可以通过app.config_from_object() method告诉Celery通过一个模块来生成configuration: app.config_from_object(‘celeryconfig‘) 这个模块通常叫做 celeryconfig,但实际上你可以叫任何名字。
$ cat celeryconfig.py
CELERY_ROUTES = {‘tasks.add‘: ‘low-priority‘, ‘tasks.add‘: {‘rate_limit‘: ‘10/m‘}
8.Where to go from here
如果你想了解更多请阅读: http://docs.celeryproject.org/en/latest/getting-started/next-steps.html#next-steps
之后阅读: http://docs.celeryproject.org/en/latest/userguide/index.html#guide
以上是关于理论python使用celery异步处理请求的主要内容,如果未能解决你的问题,请参考以下文章
异步 celery 任务完成后自动调用 PHP 代码(celery-php)
Celery + Flower + FastAPI + RabbitMQ ,Python实现异步消息队列和监控