python 生成器和递归

Posted FuZZ

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python 生成器和递归相关的知识,希望对你有一定的参考价值。

生成器

1.定义

  • 问题:python会把对象放到内存中,我们每次定义变量、列表等都会在内存中占用对应的地址块,所以当内存容量一定时,列表的容量会受到内存的限制,而且假如我们创建了一个包含200万个元素的列表,不仅会占用很大的地址空间,如果我们仅仅需要访问前面的几个元素,那么会造成后面的元素占用的空间都浪费了。基于这个问题,生成器就可以很好的解决。
  • 解决:生成器可以根据特定的算法,生成一个可迭代的对象,当我们调用此对象时,可以在循环过程中不断推算后续的元素,调用终止之后则不再循环,而后面的元素也就不在创建,这样很好的解决了上面的问题
  • 定义:生成器是这样一个函数,它记住上一次返回时在函数体中的位置。对生成器函数的第二次(或第 n 次)调用跳转至该函数中间,而上次调用的所有局部变量都保持不变。 生成器不仅“记住”了它数据状态;生成器还“记住”了它在流控制构造(在命令式编程中,这种构造不只是数据值)中的位置。
  • 生成器的特点: 生成器是一个函数,而且函数的参数都会保留。 迭代到下一次的调用时,所使用的参数都是第一次所保留下的,即是说,在整个所有函数调用的参数都是第一次所调用时保留的,而不是新创建的

2.创建

在函数中,如果使用了关键字yield时,此函数就是一个生成器,他的执行会和其他普通的函数有很多不同,函数返回的是一个对象,而不是一个结果值,如果需要得道结果值,需要调用next()函数
如下:

#定义一个生成器func
def func():
    print(111)     #使用print打印每次循环的结果,便于查看  
    yield 1
    print(222)
    yield 2
    print(333)
    yield 3

res = func()

 

下面开始进行循环

方法1:使用for循环

for i in res:
print(i)

输出结果:
111 #生成器第一次pring
1 #yield返回的对象值
222 #生成器第二次pring
2 #yield返回的对象值
333 #生成器第三次pring
3 #yield返回的对象值

 


方法2:使用next()迭代

print("1".center(10,*))
r1 = res.__next__()   #进入函数找到yield,并去到yield后面的数据
print(r1)

print("2".center(10,*))
r2 = res.__next__()   #进入函数找到yield,并去到yield后面的数据
print(r2)

print("3".center(10,*))
r3 = res.__next__()   #进入函数找到yield,并去到yield后面的数据
print(r3)

输出结果:
****1*****
111
1
****2*****
222
2
****3*****
333
3

 

PS:for循环会自动调用next()方法,每当调用一次迭代器的next函数,生成器函数运行到yield之处,返回yield后面的值且在这个地方暂停,所有的状态都会被保持住,直到下次next函数被调用,或者碰到异常循环退出,所以如果一个生成器中一个yield被迭代之后,下次会读取下一个yield,所以for循环和next函数不能混用

  • 生成器应用实例:排列和组合
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
#pyversion:python3.5
#owner:fuzj

#组合生成器
def perm(items, n = None):
    if n is None:
        n = len(items)
    for i in range(len(items)):
        v = items[i:i+1]          #使用字符串分片,取其中的元素
        if n==1:                #如果是第一次循环,则打印第一个字符和第二个字符
            yield v
        else:
            rest = items[:i] + items[i+1:]   #i+1表示接着上次运行的状态i的值进行切片,取后面的值字符
            for p in perm(rest, n-1):  #递归调用本生成器,进行循环,此就是之前描述的特定规则
                yield v + p
#排列生成器
def comb(items, n = None):
    if n is None:
        n = len(items)
    else:
        for i in range(len(items)):
            v = items[i:i+1]      #使用字符串分片,取其中的元素
            if 1 == n:      #第一次循环,则打印第一个和第二个字符
                yield v
            else:
                rest = items[i+1:]   
                for c in comb(rest, n-1):  #递归调用本生成器,进行循环,此就是之前描述的特定规则
                    yield v + c
p = perm(abcd,2)
c = comb(abcd,2)
print(组合.center(10,"="))
for i in p:
    print(i)
print(排列.center(10,"="))
for i in c:
    print(i)
输出效果:

====组合====
ab
ac
ad
ba
bc
bd
ca
cb
cd
da
db
dc
====排列====
ab
ac
ad
bc
bd
cd

 

递归

递归的理解,可以从一个需求中进行慢慢剖析

  • 需求:计算1*2*3*....*1000的值

这是一个简单计算叠乘的需求,如果没接触递归之前,可以使用函数来实现

def func(arg):
    res = arg
    for i in range(1,arg):
        res *= 1 
    return res

 

这个函数通过循环arg以内的数,再依次相乘最终返回结果,如果使用递归的方法,将更简单

def fun(arg):
    if arg == 1:
        return arg
    return arg * fun(arg -1)

 

  • 通过此函数发现,函数最终return的是函数本身的表达式,如果计算5以内的阶乘,他的运行如下:
    1)fun(5)调用函数fun()函数,此时arg = 5,5>1,所以会return 5 * fun(4)
    2)fun(4)会调用fun()函数,此时arg=4,4>1,所以会return 4 * fun(3)
    3)fun(3)会调用fun()函数,此时arg=3,3>1,所以会return 3 * fun(2)
    4)fun(2)会调用fun()函数,此时arg=2,2>1,所以会return 2 * fun(1)
    5)fun(1)会调用fun()函数,此时arg=1,1=1,所以会return 1
    6)当fun(1)将值返回给fun(2)之后,此时fun(2)=fun(1)*2=2,继续往上返回给fun(3)
    7)当fun(2)将值返回给fun(3)之后,此时fun(3)=fun(2)*3=6,继续往上返回给fun(4)
    8)当fun(3)将值返回给fun(4)之后,此时fun(4)=fun(3)*4=24,继续往上返回给fun(5)
    9)当fun(4)将值返回给fun(5)之后,此时fun(5)=fun(4)*5=120,最终得出结果

  • 特点

创建递归的条件

1.一个基线条件:递归终止的条件,需递归开始的时候进行判断处理。
2.一系列的规则:使对递归函数的每次调用都趋进于直至达到这个基线条件

递归可以提高代码的可读性,但是运行效率较低。在递归调用的过程当中系统为每一层的返回点、局部量等开辟了栈来存储。递归次数过多容易造成栈溢出等。

 

以上是关于python 生成器和递归的主要内容,如果未能解决你的问题,请参考以下文章

Python代码阅读(第40篇):通过两个列表生成字典

python 基础 正则,递归 生成器

Python – 递归和生成器

Python实现JSON生成器和递归下降解释器

Python生成器的问题

模块调用,datetime,time,logging,递归,双层装饰器, json,pickle迭代器和生成器