4 基于概率论的分类方法:朴素贝叶斯

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了4 基于概率论的分类方法:朴素贝叶斯相关的知识,希望对你有一定的参考价值。

4.7 示例:使用朴素贝叶斯分类器从个人广告中获取区域倾向

前面介绍了两个应用:1.过滤网站的恶意留言;2.过滤垃圾邮件。

4.7.1 收集数据:导入RSS源

Universal Feed Parser是Python中最常用的RSS程序库。

在Python提示符下输入:

技术分享

技术分享

构建类似于spamTest()函数来对测试过程自动化。

#RSS源分类器及高频词去除函数
def calcMostFreg(vocabList, fullText):
    import operator
    freqDict = {}
    for token in vocabList:#遍历词汇表中的每个词,统计它在文本中出现的次数
        freqDict[token] = fullText.count(token)
    sortedFreq = sorted(freqDict.iteritems(), key = operator.itemgetter(1), reverse = True)
    return sortedFreq[:30]#返回排序最高的30个单词

def localWords(feed1, feed0):
    import feedparser
    docList = []; classList = []; fullText = []
    minLen = min(len(feed1[entries]), len(feed0[entries]))
    for i in range(minLen):#每次访问一条RSS源
        wordList = textParse(feed1[entries][i][summary])
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        wordList = textParse(feed0[entries][i][summary])
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    vocabList = createVocabList(docList)
    #去掉出现次数最高的那些词
    top30Words = calcMostFreg(vocabList, fullText)
    for pairW in top30Words:
        if pairW[0] in vocabList: vocabList.remove(pairW[0])

    trainingSet = range(2 * minLen); testSet = []
    for i in range(20):#随机抽取20个文件作为testSet
        randIndex = int(random.uniform(0, len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del(trainingSet[randIndex])
    trainMat = []; trainClasses = []
    for docIndex in trainingSet:
        trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
        trainClasses.append(classList[docIndex])
    p0V, p1V, pSpam = trainNB0(array(trainMat), array(trainClasses))
    errorCount = 0
    for docIndex in testSet:
        wordVector = bagOfWords2VecMN(vocabList, docList[docIndex])
        if classifyNB(array(wordVector), p0V, p1V, pSpam) != classList[docIndex]:
            errorCount += 1
    print the error rate is: , float(errorCount)/len(testSet)
    return vocabList, p0V, p1V

技术分享

4.7.2 分析数据:显示地域相关的用词

#最具表特征的词汇显示函数
def getTopWords(ny, sf):
    import operator
    vocabList, p0V, p1V = locablWords(ny, sf)
    topNY = []; topSF = []#创建列表用于元祖的存储
    for i in range(len(p0V)):
        if p0V[i] > -6.0:topSF.append((vocabList[i], p0V[i]))
        if p1V[i] > -6.0:topNY.append((vocabList[i], p1V[i]))
    sortedSF = sorted(topSF, key = lambda pair: pair[1], reverse = True)
    print "SF**SF**SF**SF**SF**SF**SF**SF**"
    for item in sortedSF:
        print item[0]
    sortedNY = sorted(topNY, key = lambda pair: pair[1], reverse = True)
    print "NY**NY**NY**NY**NY**NY**NY**NY**"
    for item in sortedNY:
        print item[0]

技术分享

以上是关于4 基于概率论的分类方法:朴素贝叶斯的主要内容,如果未能解决你的问题,请参考以下文章

基于概率论的分类方法:朴素贝叶斯

4.朴素贝叶斯法

朴素贝叶斯法

朴素贝叶斯:基于概率论的分类模型

朴素贝叶斯分类垃圾短信和R实现

朴素贝叶斯-垃圾邮件分类实现