(版本定制)第15课:Spark Streaming源码解读之No Receivers彻底思考
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了(版本定制)第15课:Spark Streaming源码解读之No Receivers彻底思考相关的知识,希望对你有一定的参考价值。
hu本期内容:
1、Kafka解密
背景:
目前No Receivers在企业中使用的越来越多,No Receivers具有更强的控制度,语义一致性。No Receivers是我们操作数据来源自然方式,操作数据来源使用一个封装器,且是RDD类型的。
所以Spark Streaming就产生了自定义RDD –> KafkaRDD.
源码分析:
1、KafkaRDD源码
private[kafka]
class KafkaRDD[
K: ClassTag,
V: ClassTag,
U <: Decoder[_]: ClassTag,
T <: Decoder[_]: ClassTag,
R: ClassTag] private[spark] (
sc: SparkContext,
kafkaParams: Map[String, String],
val offsetRanges: Array[OffsetRange], //指定数据范围
leaders: Map[TopicAndPartition, (String, Int)],
messageHandler: MessageAndMetadata[K, V] => R
) extends RDD[R](sc, Nil) with Logging with HasOffsetRanges {
override def getPartitions: Array[Partition] = {
offsetRanges.zipWithIndex.map { case (o, i) =>
val (host, port) = leaders(TopicAndPartition(o.topic, o.partition))
new KafkaRDDPartition(i, o.topic, o.partition, o.fromOffset, o.untilOffset, host, port)
}.toArray
}
2、HasOffsetRanges
/**
* Represents any object that has a collection of [[OffsetRange]]s. This can be used to access the
* offset ranges in RDDs generated by the direct Kafka DStream (see
* [[KafkaUtils.createDirectStream()]]).
* {{{
* KafkaUtils.createDirectStream(...).foreachRDD { rdd =>
* val offsetRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
* ...
* }
* }}}
*/
trait HasOffsetRanges {
def offsetRanges: Array[OffsetRange]
}
3、KafkaRDD中的compute
override def compute(thePart: Partition, context: TaskContext): Iterator[R] = {
val part = thePart.asInstanceOf[KafkaRDDPartition]
assert(part.fromOffset <= part.untilOffset, errBeginAfterEnd(part))
if (part.fromOffset == part.untilOffset) {
log.info(s"Beginning offset ${part.fromOffset} is the same as ending offset " +
s"skipping ${part.topic} ${part.partition}")
Iterator.empty
} else {
new KafkaRDDIterator(part, context)
}
}
SparkStreaming一般使用KafkaUtils的createDirectStream读取数据
def createDirectStream[
K: ClassTag,
V: ClassTag,
KD <: Decoder[K]: ClassTag,
VD <: Decoder[V]: ClassTag] (
ssc: StreamingContext,
kafkaParams: Map[String, String],
topics: Set[String]
): InputDStream[(K, V)] = {
val messageHandler = (mmd: MessageAndMetadata[K, V]) => (mmd.key, mmd.message)
val kc = new KafkaCluster(kafkaParams)
val fromOffsets = getFromOffsets(kc, kafkaParams, topics)
new DirectKafkaInputDStream[K, V, KD, VD, (K, V)](
ssc, kafkaParams, fromOffsets, messageHandler)
}
4、通过getFromOffsets的方法获取topic的fromOffset值
[kafka] ( kc: KafkaClusterkafkaParams: []topics: [] ): [TopicAndPartition] = { reset = kafkaParams.get().map(_.toLowerCase) result = { topicPartitions <- kc.getPartitions(topics).right leaderOffsets <- ((reset == ()) { kc.getEarliestLeaderOffsets(topicPartitions) } { kc.getLatestLeaderOffsets(topicPartitions) }).right } { leaderOffsets.map { (tplo) => (tplo.offset) } } KafkaCluster.(result) }
createDirectStream其实生成的是DirectKafkaInputDStream对象,通过compute方法会产生KafkaRDD
(validTime: Time): Option[KafkaRDD[]] = { untilOffsets = clamp(latestLeaderOffsets()) rdd = []( context.sparkContextkafkaParamsuntilOffsetsmessageHandler) offsetRanges = .map { (tpfo) => uo = untilOffsets(tp) (tp.topictp.partitionfouo.offset) } description = offsetRanges.filter { offsetRange => offsetRange.fromOffset != offsetRange.untilOffset }.map { offsetRange => {offsetRange.topic}{offsetRange.partition}+ {offsetRange.fromOffset}{offsetRange.untilOffset}}.mkString() metadata = ( -> offsetRanges.toListStreamInputInfo.-> description) inputInfo = (rdd.countmetadata) ssc...reportInfo(validTimeinputInfo) = untilOffsets.map(kv => kv._1 -> kv._2.offset) (rdd) }
采用Direct的好处?
1. Direct方式没有数据缓存,因此不会出现内存溢出,但是如果采用Receiver的话就需要缓存。
2. 如果采用Receiver的方式,不方便做分布式,而Direct方式默认数据就在多台机器上。
3. 在实际操作的时候如果采用Receiver的方式的弊端是假设数据来不及处理,但是Direct就不会,因为是直接读取数据。
4. 语义一致性,Direct的方式数据一定会被执行。
备注:
资料来源于:DT_大数据梦工厂(Spark发行版本定制)
更多私密内容,请关注微信公众号:DT_Spark
如果您对大数据Spark感兴趣,可以免费听由王家林老师每天晚上20:00开设的Spark永久免费公开课,地址YY房间号:68917580
本文出自 “DT_Spark大数据梦工厂” 博客,请务必保留此出处http://18610086859.blog.51cto.com/11484530/1784993
以上是关于(版本定制)第15课:Spark Streaming源码解读之No Receivers彻底思考的主要内容,如果未能解决你的问题,请参考以下文章
(版本定制)第12课:Spark Streaming源码解读之Executor容错安全性
(版本定制)第16课:Spark Streaming源码解读之数据清理内幕彻底解密
(版本定制)第14课:Spark Streaming源码解读之State管理之updateStateByKey和mapWithState解密
(版本定制)第11课:Spark Streaming源码解读之Driver中的ReceiverTracker彻底研究和思考