STM32H7的DSP教程第17章 DSP功能函数-定点数互转
Posted armfly
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了STM32H7的DSP教程第17章 DSP功能函数-定点数互转相关的知识,希望对你有一定的参考价值。
完整版教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=94547
第17章 DSP功能函数-定点数互转
本期教程主要讲解功能函数中的Q7,Q15和Q31分别向其它类型数据转换。
17.1 初学者重要提示
17.2 DSP基础运算指令
17.3 定点数Q7转换
17.4 定点数Q15转换
17.5 定点数Q31转换
17.6 总结
17.1 初学者重要提示
- 浮点数的四舍五入处理:http://www.armbbs.cn/forum.php?mod=viewthread&tid=95149 。
- C库的浮点数四舍五入函数round,roundf,round使用说明:http://www.armbbs.cn/forum.php?mod=viewthread&tid=95156 。
17.2 DSP基础运算指令
本章用到的DSP指令在前面章节都已经讲解过。
17.3 定点数Q7转换
Q7转浮点数:
pDst[n] = (float32_t) pSrc[n] / 128; 0 <= n < blockSize.
Q7转Q31:
pDst[n] = (q31_t) pSrc[n] << 24; 0 <= n < blockSize.
Q7转Q15:
pDst[n] = (q15_t) pSrc[n] << 8; 0 <= n < blockSize.
17.3.1 函数arm_q7_to_float
函数原型:
void arm_q7_to_float(
const q7_t * pSrc,
float32_t * pDst,
uint32_t blockSize)
函数描述:
这个函数用于定点数Q7转浮点数。
函数参数:
- 第1个参数是源数据地址。
- 第2个参数是转换后的数据地址。
- 第3个参数转换个数。
17.3.2 函数arm_q7_to_q31
函数原型:
void arm_q7_to_q31(
const q7_t * pSrc,
q31_t * pDst,
uint32_t blockSize)
函数描述:
这个函数用于定点Q7转定点数Q31。
函数参数:
- 第1个参数源数据地址。
- 第2个参数是转换后的数据地址。
- 第3个参数是转换的次数。
17.3.3 函数arm_q7_to_q15
函数原型:
void arm_q7_to_q15(
const q7_t * pSrc,
q15_t * pDst,
uint32_t blockSize)
函数描述:
这个函数用于定点数Q7转定点数Q15。
函数参数:
- 第1个参数源数据地址。
- 第2个参数是转换后的数据地址。
- 第3个参数是转换的次数。
17.3.4 使用举例
程序设计:
/* ********************************************************************************************************* * 函 数 名: DSP_Q7 * 功能说明: Q7格式数据向其它格式转换 * 形 参: 无 * 返 回 值: 无 ********************************************************************************************************* */ static void DSP_Q7(void) { float32_t pDst[10]; uint32_t pIndex; q31_t pDst1[10]; q15_t pDst2[10]; q7_t pSrc[10]; for(pIndex = 0; pIndex < 10; pIndex++) { pSrc[pIndex] = rand()%128; printf("pSrc[%d] = %d ", pIndex, pSrc[pIndex]); } /*****************************************************************/ arm_q7_to_float(pSrc, pDst, 10); for(pIndex = 0; pIndex < 10; pIndex++) { printf("arm_q7_to_float: pDst[%d] = %f ", pIndex, pDst[pIndex]); } /*****************************************************************/ arm_q7_to_q31(pSrc, pDst1, 10); for(pIndex = 0; pIndex < 10; pIndex++) { printf("arm_q7_to_q31: pDst1[%d] = %d ", pIndex, pDst1[pIndex]); } /*****************************************************************/ arm_q7_to_q15(pSrc, pDst2, 10); for(pIndex = 0; pIndex < 10; pIndex++) { printf("arm_q7_to_q15: pDst2[%d] = %d ", pIndex, pDst2[pIndex]); } /*****************************************************************/ printf("****************************************************************** "); }
实验现象:
17.4 定点数Q15转换
Q15转浮点数:
pDst[n] = (float32_t) pSrc[n] / 32768; 0 <= n < blockSize.
Q15转Q31:
pDst[n] = (q31_t) pSrc[n] << 16; 0 <= n < blockSize.
Q15转Q7:
pDst[n] = (q7_t) pSrc[n] >> 8; 0 <= n < blockSize.
17.4.1 函数arm_q15_to_float
函数原型:
void arm_q15_to_float(
const q15_t * pSrc,
float32_t * pDst,
uint32_t blockSize)
函数描述:
这个函数用于定点数Q15转浮点数。
函数参数:
- 第1个参数源数据地址。
- 第2个参数是转换后的数据地址。
- 第3个参数是转换的次数。
17.4.2 函数arm_q15_to_q31
函数原型:
void arm_q15_to_q31(
const q15_t * pSrc,
q31_t * pDst,
uint32_t blockSize)
函数描述:
这个函数用于定点数Q15转定点数Q31。
函数参数:
- 第1个参数源数据地址。
- 第2个参数是转换后的数据地址。
- 第3个参数是转换的次数。
17.4.3 函数arm_q15_to_q7
函数原型:
void arm_q15_to_q7(
const q15_t * pSrc,
q7_t * pDst,
uint32_t blockSize)
函数描述:
这个函数用于定点数Q15转定点数Q7。
函数参数:
- 第1个参数源数据地址。
- 第2个参数是转换后的数据地址。
- 第3个参数是转换的次数。
17.4.4 使用举例
程序设计:
/* ********************************************************************************************************* * 函 数 名: DSP_Q15 * 功能说明: Q15格式数据向其它格式转换 * 形 参: 无 * 返 回 值: 无 ********************************************************************************************************* */ static void DSP_Q15(void) { float32_t pDst[10]; uint32_t pIndex; q31_t pDst1[10]; q15_t pSrc[10]; q7_t pDst2[10]; for(pIndex = 0; pIndex < 10; pIndex++) { pSrc[pIndex] = rand()%32678; printf("pSrc[%d] = %d ", pIndex, pSrc[pIndex]); } /*****************************************************************/ arm_q15_to_float(pSrc, pDst, 10); for(pIndex = 0; pIndex < 10; pIndex++) { printf("arm_q15_to_float: pDst[%d] = %f ", pIndex, pDst[pIndex]); } /*****************************************************************/ arm_q15_to_q31(pSrc, pDst1, 10); for(pIndex = 0; pIndex < 10; pIndex++) { printf("arm_q15_to_q31: pDst1[%d] = %d ", pIndex, pDst1[pIndex]); } /*****************************************************************/ arm_q15_to_q7(pSrc, pDst2, 10); for(pIndex = 0; pIndex < 10; pIndex++) { printf("arm_q15_to_q7: pDst2[%d] = %d ", pIndex, pDst2[pIndex]); } /*****************************************************************/ printf("****************************************************************** "); }
实验现象:
17.5 定点数Q31转换
Q31转浮点数:
pDst[n] = (float32_t) pSrc[n] / 2147483648; 0 <= n < blockSize.
Q31转Q15:
pDst[n] = (q15_t) pSrc[n] >> 16; 0 <= n < blockSize.
Q31转Q7:
pDst[n] = (q7_t) pSrc[n] >> 24; 0 <= n < blockSize.
17.5.1 函数arm_q31_to_float
函数原型:
void arm_q31_to_float(
const q31_t * pSrc,
float32_t * pDst,
uint32_t blockSize)
函数描述:
这个函数用于32位定点数转浮点数。
函数参数:
- 第1个参数是源数据地址。
- 第2个参数是转换后的数据地址。
- 第3个参数是转换个数。
17.5.2 函数arm_q31_to_q15
函数原型:
void arm_q31_to_q15(
const q31_t * pSrc,
q15_t * pDst,
uint32_t blockSize)
函数描述:
用于32位定点数转16位定点数。
函数参数:
- 第1个参数是源数据地址。
- 第2个参数是转换后的数据地址。
- 第3个参数是转换的数据个数。
17.5.3 函数arm_q31_to_q7
函数原型:
void arm_q31_to_q7(
const q31_t * pSrc,
q7_t * pDst,
uint32_t blockSize)
函数描述:
用于32位定点数转8位定点数。
函数参数:
- 第1个参数是源数据地址。
- 第2个参数是转换后的数据地址。
- 第3个参数是转换的数据个数。
17.5.4 使用举例
程序设计:
/* ********************************************************************************************************* * 函 数 名: DSP_Q31 * 功能说明: Q31格式数据向其它格式转换 * 形 参: 无 * 返 回 值: 无 ********************************************************************************************************* */ static void DSP_Q31(void) { float32_t pDst[10]; uint32_t pIndex; q31_t pSrc[10]; q15_t pDst1[10]; q7_t pDst2[10]; for(pIndex = 0; pIndex < 10; pIndex++) { pSrc[pIndex] = rand(); printf("pSrc[%d] = %d ", pIndex, pSrc[pIndex]); } /*****************************************************************/ arm_q31_to_float(pSrc, pDst, 10); for(pIndex = 0; pIndex < 10; pIndex++) { printf("arm_q31_to_float: pDst[%d] = %f ", pIndex, pDst[pIndex]); } /*****************************************************************/ arm_q31_to_q15(pSrc, pDst1, 10); for(pIndex = 0; pIndex < 10; pIndex++) { printf("arm_q31_to_q15: pDst1[%d] = %d ", pIndex, pDst1[pIndex]); } /*****************************************************************/ arm_q31_to_q7(pSrc, pDst2, 10); for(pIndex = 0; pIndex < 10; pIndex++) { printf("arm_q31_to_q7: pDst2[%d] = %d ", pIndex, pDst2[pIndex]); } /*****************************************************************/ printf("****************************************************************** "); }
实验现象:
17.6 实验例程说明(MDK)
配套例子:
V7-212_DSP功能函数(定点数互转)
实验目的:
- 学习DSP功能函数(定点数互转)
实验内容:
- 启动一个自动重装软件定时器,每100ms翻转一次LED2。
- 按下按键K1, 串口打印Q7转换其它数据格式。
- 按下按键K2, 串口打印Q15转换其它数据格式。
- 按下按键K3, 串口打印Q31转换其它数据格式。
使用AC6注意事项
特别注意附件章节C的问题
上电后串口打印的信息:
波特率 115200,数据位 8,奇偶校验位无,停止位 1。
详见本章的3.4 4.4,5.4小节。
程序设计:
系统栈大小分配:
RAM空间用的DTCM:
硬件外设初始化
硬件外设的初始化是在 bsp.c 文件实现:
/* ********************************************************************************************************* * 函 数 名: bsp_Init * 功能说明: 初始化所有的硬件设备。该函数配置CPU寄存器和外设的寄存器并初始化一些全局变量。只需要调用一次 * 形 参:无 * 返 回 值: 无 ********************************************************************************************************* */ void bsp_Init(void) { /* 配置MPU */ MPU_Config(); /* 使能L1 Cache */ CPU_CACHE_Enable(); /* STM32H7xx HAL 库初始化,此时系统用的还是H7自带的64MHz,HSI时钟: - 调用函数HAL_InitTick,初始化滴答时钟中断1ms。 - 设置NVIV优先级分组为4。 */ HAL_Init(); /* 配置系统时钟到400MHz - 切换使用HSE。 - 此函数会更新全局变量SystemCoreClock,并重新配置HAL_InitTick。 */ SystemClock_Config(); /* Event Recorder: - 可用于代码执行时间测量,MDK5.25及其以上版本才支持,IAR不支持。 - 默认不开启,如果要使能此选项,务必看V7开发板用户手册第8章 */ #if Enable_EventRecorder == 1 /* 初始化EventRecorder并开启 */ EventRecorderInitialize(EventRecordAll, 1U); EventRecorderStart(); #endif bsp_InitKey(); /* 按键初始化,要放在滴答定时器之前,因为按钮检测是通过滴答定时器扫描 */ bsp_InitTimer(); /* 初始化滴答定时器 */ bsp_InitUart(); /* 初始化串口 */ bsp_InitExtIO(); /* 初始化FMC总线74HC574扩展IO. 必须在 bsp_InitLed()前执行 */ bsp_InitLed(); /* 初始化LED */ }
MPU配置和Cache配置:
数据Cache和指令Cache都开启。配置了AXI SRAM区(本例子未用到AXI SRAM),FMC的扩展IO区。
/* ********************************************************************************************************* * 函 数 名: MPU_Config * 功能说明: 配置MPU * 形 参: 无 * 返 回 值: 无 ********************************************************************************************************* */ static void MPU_Config( void ) { MPU_Region_InitTypeDef MPU_InitStruct; /* 禁止 MPU */ HAL_MPU_Disable(); /* 配置AXI SRAM的MPU属性为Write back, Read allocate,Write allocate */ MPU_InitStruct.Enable = MPU_REGION_ENABLE; MPU_InitStruct.BaseAddress = 0x24000000; MPU_InitStruct.Size = MPU_REGION_SIZE_512KB; MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS; MPU_InitStruct.IsBufferable = MPU_ACCESS_BUFFERABLE; MPU_InitStruct.IsCacheable = MPU_ACCESS_CACHEABLE; MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE; MPU_InitStruct.Number = MPU_REGION_NUMBER0; MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL1; MPU_InitStruct.SubRegionDisable = 0x00; MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /* 配置FMC扩展IO的MPU属性为Device或者Strongly Ordered */ MPU_InitStruct.Enable = MPU_REGION_ENABLE; MPU_InitStruct.BaseAddress = 0x60000000; MPU_InitStruct.Size = ARM_MPU_REGION_SIZE_64KB; MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS; MPU_InitStruct.IsBufferable = MPU_ACCESS_BUFFERABLE; MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE; MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE; MPU_InitStruct.Number = MPU_REGION_NUMBER1; MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0; MPU_InitStruct.SubRegionDisable = 0x00; MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /*使能 MPU */ HAL_MPU_Enable(MPU_PRIVILEGED_DEFAULT); } /* ********************************************************************************************************* * 函 数 名: CPU_CACHE_Enable * 功能说明: 使能L1 Cache * 形 参: 无 * 返 回 值: 无 ********************************************************************************************************* */ static void CPU_CACHE_Enable(void) { /* 使能 I-Cache */ SCB_EnableICache(); /* 使能 D-Cache */ SCB_EnableDCache(); }
主功能:
主程序实现如下操作:
- 启动一个自动重装软件定时器,每100ms翻转一次LED2。
- 按下按键K1, 串口打印Q7转换其它数据格式。
- 按下按键K2, 串口打印Q15转换其它数据格式。
- 按下按键K3, 串口打印Q31转换其它数据格式。
/* ********************************************************************************************************* * 函 数 名: main * 功能说明: c程序入口 * 形 参: 无 * 返 回 值: 错误代码(无需处理) ********************************************************************************************************* */ int main(void) { uint8_t ucKeyCode; /* 按键代码 */ bsp_Init(); /* 硬件初始化 */ PrintfLogo(); /* 打印例程信息到串口1 */ PrintfHelp(); /* 打印操作提示信息 */ bsp_StartAutoTimer(0, 100); /* 启动1个100ms的自动重装的定时器 */ /* 进入主程序循环体 */ while (1) { bsp_Idle(); /* 这个函数在bsp.c文件。用户可以修改这个函数实现CPU休眠和喂狗 */ /* 判断定时器超时时间 */ if (bsp_CheckTimer(0)) { /* 每隔100ms 进来一次 */ bsp_LedToggle(2); } ucKeyCode = bsp_GetKey(); /* 读取键值, 无键按下时返回 KEY_NONE = 0 */ if (ucKeyCode != KEY_NONE) { switch (ucKeyCode) { case KEY_DOWN_K1: /* K1键按下,Q7转换其它数据格式 */ DSP_Q7(); break; case KEY_DOWN_K2: /* K2键按下,Q15转换其它数据格式 */ DSP_Q15(); break; case KEY_DOWN_K3: /* K3键按下,Q31转换其它数据格式 */ DSP_Q31(); break; default: /* 其他的键值不处理 */ break; } } } }
17.7 实验例程说明(IAR)
配套例子:
V7-212_DSP功能函数(定点数互转)
实验目的:
- 学习DSP功能函数(定点数互转)
实验内容:
- 启动一个自动重装软件定时器,每100ms翻转一次LED2。
- 按下按键K1, 串口打印Q7转换其它数据格式。
- 按下按键K2, 串口打印Q15转换其它数据格式。
- 按下按键K3, 串口打印Q31转换其它数据格式。
上电后串口打印的信息:
波特率 115200,数据位 8,奇偶校验位无,停止位 1。
详见本章的3.4 4.4,5.4小节。
程序设计:
系统栈大小分配:
RAM空间用的DTCM:
硬件外设初始化
硬件外设的初始化是在 bsp.c 文件实现:
/* ********************************************************************************************************* * 函 数 名: bsp_Init * 功能说明: 初始化所有的硬件设备。该函数配置CPU寄存器和外设的寄存器并初始化一些全局变量。只需要调用一次 * 形 参:无 * 返 回 值: 无 ********************************************************************************************************* */ void bsp_Init(void) { /* 配置MPU */ MPU_Config(); /* 使能L1 Cache */ CPU_CACHE_Enable(); /* STM32H7xx HAL 库初始化,此时系统用的还是H7自带的64MHz,HSI时钟: - 调用函数HAL_InitTick,初始化滴答时钟中断1ms。 - 设置NVIV优先级分组为4。 */ HAL_Init(); /* 配置系统时钟到400MHz - 切换使用HSE。 - 此函数会更新全局变量SystemCoreClock,并重新配置HAL_InitTick。 */ SystemClock_Config(); /* Event Recorder: - 可用于代码执行时间测量,MDK5.25及其以上版本才支持,IAR不支持。 - 默认不开启,如果要使能此选项,务必看V7开发板用户手册第8章 */ #if Enable_EventRecorder == 1 /* 初始化EventRecorder并开启 */ EventRecorderInitialize(EventRecordAll, 1U); EventRecorderStart(); #endif bsp_InitKey(); /* 按键初始化,要放在滴答定时器之前,因为按钮检测是通过滴答定时器扫描 */ bsp_InitTimer(); /* 初始化滴答定时器 */ bsp_InitUart(); /* 初始化串口 */ bsp_InitExtIO(); /* 初始化FMC总线74HC574扩展IO. 必须在 bsp_InitLed()前执行 */ bsp_InitLed(); /* 初始化LED */ }
MPU配置和Cache配置:
数据Cache和指令Cache都开启。配置了AXI SRAM区(本例子未用到AXI SRAM),FMC的扩展IO区。
/* ********************************************************************************************************* * 函 数 名: MPU_Config * 功能说明: 配置MPU * 形 参: 无 * 返 回 值: 无 ********************************************************************************************************* */ static void MPU_Config( void ) { MPU_Region_InitTypeDef MPU_InitStruct; /* 禁止 MPU */ HAL_MPU_Disable(); /* 配置AXI SRAM的MPU属性为Write back, Read allocate,Write allocate */ MPU_InitStruct.Enable = MPU_REGION_ENABLE; MPU_InitStruct.BaseAddress = 0x24000000; MPU_InitStruct.Size = MPU_REGION_SIZE_512KB; MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS; MPU_InitStruct.IsBufferable = MPU_ACCESS_BUFFERABLE; MPU_InitStruct.IsCacheable = MPU_ACCESS_CACHEABLE; MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE; MPU_InitStruct.Number = MPU_REGION_NUMBER0; MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL1; MPU_InitStruct.SubRegionDisable = 0x00; MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /* 配置FMC扩展IO的MPU属性为Device或者Strongly Ordered */ MPU_InitStruct.Enable = MPU_REGION_ENABLE; MPU_InitStruct.BaseAddress = 0x60000000; MPU_InitStruct.Size = ARM_MPU_REGION_SIZE_64KB; MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS; MPU_InitStruct.IsBufferable = MPU_ACCESS_BUFFERABLE; MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE; MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE; MPU_InitStruct.Number = MPU_REGION_NUMBER1; MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0; MPU_InitStruct.SubRegionDisable = 0x00; MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /*使能 MPU */ HAL_MPU_Enable(MPU_PRIVILEGED_DEFAULT); } /* ********************************************************************************************************* * 函 数 名: CPU_CACHE_Enable * 功能说明: 使能L1 Cache * 形 参: 无 * 返 回 值: 无 ********************************************************************************************************* */ static void CPU_CACHE_Enable(void) { /* 使能 I-Cache */ SCB_EnableICache(); /* 使能 D-Cache */ SCB_EnableDCache(); }
主功能:
主程序实现如下操作:
- 启动一个自动重装软件定时器,每100ms翻转一次LED2。
- 按下按键K1, 串口打印Q7转换其它数据格式。
- 按下按键K2, 串口打印Q15转换其它数据格式。
- 按下按键K3, 串口打印Q31转换其它数据格式。
/* ********************************************************************************************************* * 函 数 名: main * 功能说明: c程序入口 * 形 参: 无 * 返 回 值: 错误代码(无需处理) ********************************************************************************************************* */ int main(void) { uint8_t ucKeyCode; /* 按键代码 */ bsp_Init(); /* 硬件初始化 */ PrintfLogo(); /* 打印例程信息到串口1 */ PrintfHelp(); /* 打印操作提示信息 */ bsp_StartAutoTimer(0, 100); /* 启动1个100ms的自动重装的定时器 */ /* 进入主程序循环体 */ while (1) { bsp_Idle(); /* 这个函数在bsp.c文件。用户可以修改这个函数实现CPU休眠和喂狗 */ /* 判断定时器超时时间 */ if (bsp_CheckTimer(0)) { /* 每隔100ms 进来一次 */ bsp_LedToggle(2); } ucKeyCode = bsp_GetKey(); /* 读取键值, 无键按下时返回 KEY_NONE = 0 */ if (ucKeyCode != KEY_NONE) { switch (ucKeyCode) { case KEY_DOWN_K1: /* K1键按下,Q7转换其它数据格式 */ DSP_Q7(); break; case KEY_DOWN_K2: /* K2键按下,Q15转换其它数据格式 */ DSP_Q15(); break; case KEY_DOWN_K3: /* K3键按下,Q31转换其它数据格式 */ DSP_Q31(); break; default: /* 其他的键值不处理 */ break; } } } }
17.8 总结
本期教程就跟大家讲这么多,有兴趣的可以深入研究这些函数源码的实现。
以上是关于STM32H7的DSP教程第17章 DSP功能函数-定点数互转的主要内容,如果未能解决你的问题,请参考以下文章
STM32H7的DSP教程第33章 STM32H7不限制点数FFT实现
STM32H7的DSP教程第33章 STM32H7不限制点数FFT实现
STM32H7的DSP教程第24章 DSP变换运算-傅里叶变换
STM32H7的DSP教程第24章 DSP变换运算-傅里叶变换