华为云技术分享Rust 算法排位记 - 插入排序的图示和代码实现
Posted huaweicloud
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了华为云技术分享Rust 算法排位记 - 插入排序的图示和代码实现相关的知识,希望对你有一定的参考价值。
Rust 代码在编写过程中与其它语言的略有不同,因为它的编译器不允许有任何不安全的写法,遂代码编写过程中花费时间最长的莫过于查找编译报错的原因。这样也有好处——代码写好之后,稳定性高得一笔!
以下是来自菜鸟教程中的排序定义和动图示意:
插入排序(英语:Insertion Sort)是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
我们来捋一捋,插入排序的主要逻辑为:
- 外循环先指定一个数,通常是第一个数
- 接着在内循环中将这个外循环指定数与左侧数逐个比较,并根据比较结果将外循环指定数插入在内循环数的左边或不动
- 左侧为排序好的元素,遂内循环中的比较是外循环指定数不停地与左侧元素进行比较
- 当外循环指定数小于左侧元素时交换位置,否则不动
- 以此类推,直到外层循环结束
现在有一组需要排序的元素:
[7, 21, 9, 13, 109, 9, 2, 50, 33, -1, 20, 11]
按照插入排序的逻辑外循环指定第一个数 7,选定后 for 循环将从下标为 1 的元素开始循环。代码表现为:
for i in 1..vectors.len(){}
下标为 0 的第一个数 7 是排序好的,那么 for 循环从下标为 1 的第二个数 21 开始。在内循环中将这个外循环指定数与左侧数 [7] 逐个比较,当外循环指定数小于左边元素时交换位置,否则不动。
此时进入下一轮外循环,指定下标为 2 的第三个数 9。在内循环中将这个外循环指定数与左侧数 [7, 21] 逐个比较,当外循环指定数小于左边元素 21 时交换位置,遇到 7 不动。遂元素组变为 :
[7, 9, 21, 13, 109, 9, 2, 50, 33, -1, 20, 11]
此时进入下一轮外循环,指定下标为 3 的第四个数 13。在内循环中将这个外循环指定数与左侧数 [7, 9, 21] 逐个比较,当外循环指定数小于左边元素 21 时交换位置,遇到 9 不动。遂元素组变为 :
[7, 9, 13, 21, 109, 9, 2, 50, 33, -1, 20, 11]
依此类推 ...
此时进入第 N 轮外循环,指定下标为 5 的第六个数 9。在内循环中将这个外循环指定数与左侧数 [7, 9, 13, 21, 109] 逐个比较:
- 当外循环指定数小于左边元素 109 时交换位置;
- 当外循环指定数小于左边元素 21 时交换位置;
- 当外循环指定数小于左边元素 13 时交换位置;
遇到 9 不动。遂元素组变为 :
[7, 9, 9, 13, 21, 109, 2, 50, 33, -1, 20, 11]
此时进入第 N 轮外循环,指定下标为 6 的第七个数 2。在内循环中将这个外循环指定数与左侧数 [7, 9, 9, 13, 21, 109] 逐个比较:
- 当外循环指定数小于左边元素 109 时交换位置;
- 当外循环指定数小于左边元素 21 时交换位置;
- 当外循环指定数小于左边元素 13 时交换位置;
- 当外循环指定数小于左边元素 9 时交换位置;
- 当外循环指定数小于左边元素 9 时交换位置;
- 当外循环指定数小于左边元素 7 时交换位置;
遍历至元素组左侧尽头,此时 j 不大于等于 0,内循环结束。遂元素组变为 :
[2, 7, 9, 9, 13, 21, 109, 50, 33, -1, 20, 11]
在此之前,2 的左侧有很多元素,它需要与这些元素逐个比较并交换位置。数字 2 的位置变化过程如下:
1 [7, 9, 9, 13, 21, 2, 109, 50, 33, -1, 20, 11] 2 [7, 9, 9, 13, 2, 21, 109, 50, 33, -1, 20, 11] 3 [7, 9, 9, 2, 13, 21, 109, 50, 33, -1, 20, 11] 4 [7, 9, 2, 9, 13, 21, 109, 50, 33, -1, 20, 11] 5 [7, 2, 9, 9, 13, 21, 109, 50, 33, -1, 20, 11] 6 [2, 7, 9, 9, 13, 21, 109, 50, 33, -1, 20, 11]
从过程中可看到,内循环的每一轮,数字 2 都会往左移动,直到前面没有比 2 大的数字。
以此规则类推,元素排序的最终结果为:
[-1, 2, 7, 9, 9, 11, 13, 20, 21, 33, 50, 109]
具体代码实现
首先定义一组元素,并打印:
1 fn main() { 2 let mut vectors = vec![7, 21, 9, 13, 109, 9, 2, 50, 33, -1, 20, 11]; 3 println!("vectors: {:?}", vectors); 4 }
然后定义排序方法:
1 fn insert_sort(vectors: &mut Vec<i32>) -> &Vec<i32>{ 2 vectors 3 }
排序方法的外循环是 for 循环:
1 fn insert_sort(vectors: &mut Vec<i32>) -> &Vec<i32>{ 2 for i in 1..vectors.len(){ 3 4 } 5 vectors 6 }
这里将外层元素赋值给可变变量 current,同时设定内循环左侧元素的下标:
1 fn insert_sort(vectors: &mut Vec<i32>) -> &Vec<i32>{ 2 for i in 1..vectors.len(){ 3 let mut current = vectors[i]; 4 let mut j = i - 1; 5 } 6 vectors 7 }
在内循环中的将这个外循环指定数与左侧数逐个比较,当外循环指定数小于左侧元素时交换位置,否则不动。
与左侧元素比较用 j = i - 1, vectors[j] 表示;
不停地与左侧元素比较用 while j >= 0, j = j -1 表示;
比较用 current < vectors[j] 表示;
交换位置无法像 Python 那样 a, b = b, a,只能用 c = a, a = b, b = c 这种加入第三个数的方式倒腾。遂代码如下
1 fn insert_sort(vectors: &mut Vec<i32>) -> &Vec<i32>{ 2 for i in 1..vectors.len(){ 3 let mut current = vectors[i]; 4 let mut j = i - 1; 5 while j >= 0 && current < vectors[j]{ 6 let middle = vectors[j+1]; 7 vectors[j+1] = vectors[j]; 8 vectors[j] = middle; 9 j = j - 1; 10 } 11 } 12 vectors 13 }
不过这样写的话,外循环指定数为比左侧所有数都小的情况下会无法通过编译的。例如外循环指定数为 2 时需要与左侧所有数进行比较,直到 j = 0,但 while 中最后一句是 j = j - 1,运行到这里后 j = -1。按照正常运行流程,程序会进入到下一轮 while j >= 0 的内循环,但由于 j = -1,就不会进入 while 循环体。Python 语言这样写是没问题的,但 Rust 的编译器不允许,遂需要在 j = j - 1 外层增加控制语句 if j = 0。
理论的验证
上面的理论看似有理有据令人信服,但究竟对不对呢?
有没有可能分析错误呢?
虽然程序是对的,但万一描述出来的逻辑有误呢?
我们可以通过打印程序执行过程中的外循环指定数 current、内循环左侧第一个数和每次交换位置后元素组 vectors 来观察循环比较时元素位置的变化情况。添加了打印语句的代码如下:
1 fn insert_sort(vectors: &mut Vec<i32>) -> &Vec<i32>{ 2 for i in 1..vectors.len(){ 3 let mut current = vectors[i]; 4 let mut j = i - 1; 5 println!("current vectors: {:?}", vectors); 6 println!("current: {} < vectors[j]: {}", current, vectors[j]); 7 while j >= 0 && current < vectors[j]{ 8 let middle = vectors[j+1]; 9 vectors[j+1] = vectors[j]; 10 vectors[j] = middle; 11 if j > 0{ 12 /* rust 不允许while j >=0 中 j = 0 时还减 1 13 导致 j 在 while 中为负数这种危险写法*/ 14 j = j - 1; // j 递减即不断地跟左边比较 15 } 16 println!("after vectors: {:?}", vectors); 17 } 18 } 19 vectors 20 }
代码运行后的打印结果如为:
1 vectors: [7, 21, 9, 13, 109, 9, 2, 50, 33, -1, 20, 11] 2 current vectors: [7, 21, 9, 13, 109, 9, 2, 50, 33, -1, 20, 11] 3 current: 21 < vectors[j]: 7 4 current vectors: [7, 21, 9, 13, 109, 9, 2, 50, 33, -1, 20, 11] 5 current: 9 < vectors[j]: 21 6 after vectors: [7, 9, 21, 13, 109, 9, 2, 50, 33, -1, 20, 11] 7 current vectors: [7, 9, 21, 13, 109, 9, 2, 50, 33, -1, 20, 11] 8 current: 13 < vectors[j]: 21 9 after vectors: [7, 9, 13, 21, 109, 9, 2, 50, 33, -1, 20, 11] 10 current vectors: [7, 9, 13, 21, 109, 9, 2, 50, 33, -1, 20, 11] 11 current: 109 < vectors[j]: 21 12 current vectors: [7, 9, 13, 21, 109, 9, 2, 50, 33, -1, 20, 11] 13 current: 9 < vectors[j]: 109 14 after vectors: [7, 9, 13, 21, 9, 109, 2, 50, 33, -1, 20, 11] 15 after vectors: [7, 9, 13, 9, 21, 109, 2, 50, 33, -1, 20, 11] 16 after vectors: [7, 9, 9, 13, 21, 109, 2, 50, 33, -1, 20, 11] 17 current vectors: [7, 9, 9, 13, 21, 109, 2, 50, 33, -1, 20, 11] 18 current: 2 < vectors[j]: 109 19 after vectors: [7, 9, 9, 13, 21, 2, 109, 50, 33, -1, 20, 11] 20 after vectors: [7, 9, 9, 13, 2, 21, 109, 50, 33, -1, 20, 11] 21 after vectors: [7, 9, 9, 2, 13, 21, 109, 50, 33, -1, 20, 11] 22 after vectors: [7, 9, 2, 9, 13, 21, 109, 50, 33, -1, 20, 11] 23 after vectors: [7, 2, 9, 9, 13, 21, 109, 50, 33, -1, 20, 11] 24 after vectors: [2, 7, 9, 9, 13, 21, 109, 50, 33, -1, 20, 11] 25 current vectors: [2, 7, 9, 9, 13, 21, 109, 50, 33, -1, 20, 11] 26 current: 50 < vectors[j]: 109 27 after vectors: [2, 7, 9, 9, 13, 21, 50, 109, 33, -1, 20, 11] 28 current vectors: [2, 7, 9, 9, 13, 21, 50, 109, 33, -1, 20, 11] 29 current: 33 < vectors[j]: 109 30 after vectors: [2, 7, 9, 9, 13, 21, 50, 33, 109, -1, 20, 11] 31 after vectors: [2, 7, 9, 9, 13, 21, 33, 50, 109, -1, 20, 11] 32 current vectors: [2, 7, 9, 9, 13, 21, 33, 50, 109, -1, 20, 11] 33 current: -1 < vectors[j]: 109 34 after vectors: [2, 7, 9, 9, 13, 21, 33, 50, -1, 109, 20, 11] 35 after vectors: [2, 7, 9, 9, 13, 21, 33, -1, 50, 109, 20, 11] 36 after vectors: [2, 7, 9, 9, 13, 21, -1, 33, 50, 109, 20, 11] 37 after vectors: [2, 7, 9, 9, 13, -1, 21, 33, 50, 109, 20, 11] 38 after vectors: [2, 7, 9, 9, -1, 13, 21, 33, 50, 109, 20, 11] 39 after vectors: [2, 7, 9, -1, 9, 13, 21, 33, 50, 109, 20, 11] 40 after vectors: [2, 7, -1, 9, 9, 13, 21, 33, 50, 109, 20, 11] 41 after vectors: [2, -1, 7, 9, 9, 13, 21, 33, 50, 109, 20, 11] 42 after vectors: [-1, 2, 7, 9, 9, 13, 21, 33, 50, 109, 20, 11] 43 current vectors: [-1, 2, 7, 9, 9, 13, 21, 33, 50, 109, 20, 11] 44 current: 20 < vectors[j]: 109 45 after vectors: [-1, 2, 7, 9, 9, 13, 21, 33, 50, 20, 109, 11] 46 after vectors: [-1, 2, 7, 9, 9, 13, 21, 33, 20, 50, 109, 11] 47 after vectors: [-1, 2, 7, 9, 9, 13, 21, 20, 33, 50, 109, 11] 48 after vectors: [-1, 2, 7, 9, 9, 13, 20, 21, 33, 50, 109, 11] 49 current vectors: [-1, 2, 7, 9, 9, 13, 20, 21, 33, 50, 109, 11] 50 current: 11 < vectors[j]: 109 51 after vectors: [-1, 2, 7, 9, 9, 13, 20, 21, 33, 50, 11, 109] 52 after vectors: [-1, 2, 7, 9, 9, 13, 20, 21, 33, 11, 50, 109] 53 after vectors: [-1, 2, 7, 9, 9, 13, 20, 21, 11, 33, 50, 109] 54 after vectors: [-1, 2, 7, 9, 9, 13, 20, 11, 21, 33, 50, 109] 55 after vectors: [-1, 2, 7, 9, 9, 13, 11, 20, 21, 33, 50, 109] 56 after vectors: [-1, 2, 7, 9, 9, 11, 13, 20, 21, 33, 50, 109] 57 results: [-1, 2, 7, 9, 9, 11, 13, 20, 21, 33, 50, 109]
由此可见,理论部分的描述是正确的
完整的 Rust 插入排序代码如下:
Rust 算法代码仓库地址 github.com/asyncins/ac…
作者:华为云云享专家 韦世东
以上是关于华为云技术分享Rust 算法排位记 - 插入排序的图示和代码实现的主要内容,如果未能解决你的问题,请参考以下文章