9主成分分析
Posted wh008
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了9主成分分析相关的知识,希望对你有一定的参考价值。
一、用自己的话描述出其本身的含义:
1、特征选择
是指从已有的M个特征中选择N个特征使得系统的特定指标最优化,是从原始特征中选择出一些最有效特征以降低数据集维度的过程,是提高学习算法性能的一个重要手段,也是模式识别中关键的数据预处理步骤。
2、PCA
主成分分析 ,是一种掌握事物主要矛盾的统计分析方法,它可以从多元事物中解析出主要影响因素,揭示事物的本质,简化复杂的问题。计算主成分的目的是将高维数据投影到较低维空间。
二、并用自己的话阐述出两者的主要区别
特征选择:是从原始特征中选择出一些最有效特征以降低数据集维度的过程,没有改变原始特征。
PCA:主成分分析经常用于减少数据集的维数,同时保持数据集中的对方差贡献最大的特征。改变了原始特征。
以上是关于9主成分分析的主要内容,如果未能解决你的问题,请参考以下文章