机器学习基础:朴素贝叶斯小结
Posted 54hys
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了机器学习基础:朴素贝叶斯小结相关的知识,希望对你有一定的参考价值。
机器学习基础:朴素贝叶斯小结
CONTENTS
1. 全概率公式与贝叶斯公式
2. 朴素贝叶斯的模型
假设分类模型样本是:
共有m
个样本, n
个特征, K
个类别, 定义为(C_1, C_2, ... , C_K)。
从样本中可以得到先验分布(P(Y=C_k)(k=1,2,...,K)), 也可以根据特定的先验知识定义先验分布。
接着需要得到条件概率分布(P(X=x|Y=C_k)=P(X_1=x_1,X_2=x_2,...X_n=x_n|Y=C_k)), 然后求得联合分布:
(P(Y=C_k)) 可以用最大似然法求出, 得到的(P(Y=C_k))就是类别(C_k)在训练集中出现的频数。但是条件概率分布(P(X=x|Y=C_k)=P(X_1=x_1,X_2=x_2,...X_n=x_n|Y=C_k)),很难求出,朴素贝叶斯模型在这里做了一个大胆的假设,即X
的n
个维度之间相互独立,这样就可以得出:
我们只要计算出所有的K个条件概率(P(Y=C_k|X=X^{(test)})),然后找出最大的条件概率对应的类别,这就是朴素贝叶斯的预测。
3. 朴素贝叶斯的推断过程
假设预测的类别(C_result)是使(P(Y=C_k|X=X^{(test)}))最大化的类别,数学表达式为:
接着利用朴素贝叶斯的独立性假设,就可以得到朴素贝叶斯推断公式:
4. 朴素贝叶斯的参数估计
4.1 对于离散值特征
假设服从多项式分布,这样得到(P(X_j=X^{(test)}_j|Y=C_k))是在样本类别(C_k)中,特征(X^{(test)}_j)出现的频率。即:
某些时候,可能某些类别在样本中没有出现,这样可能导致(P(X_j=X^{(test)}_j|Y=C_k))为0,这样会影响后验的估计,为了解决这种情况,引入了拉普拉斯平滑,即此时有:
4.2 对于非常稀疏的离散值
假设服从伯努利分布, 即特征(X_j)出现记为1,不出现记为0。即只要(X_j)出现即可,不关注(X_j)的次数。此时有:
4.3 对于连续值特征
通常假设(X_j)的先验概率为正态分布, 有:
5. 朴素贝叶斯算法优缺点
优点:
- 对小规模的数据表现很好,能个处理多分类任务,适合增量式训练,尤其是数据量超出内存时,可以一批批的去增量训练;
- 对缺失数据不太敏感,算法也比较简单,有稳定的分类效率,常用于文本分类;
缺点:
- 独立性假设在很多情况下并不成立, 在属性个数比较多或者属性之间相关性较大时,分类效果不好。而在属性相关性较小时,朴素贝叶斯性能最为良好。
- 需要知道先验概率,且先验概率很多时候取决于假设,假设的模型可以有很多种,因此在某些时候会由于假设的先验模型的原因导致预测效果不佳。
- 由于我们是通过先验和数据来决定后验的概率从而决定分类,所以分类决策存在一定的错误率。
- 对输入数据的表达形式很敏感。
6. 代码实践
import math
class NaiveBayes:
def __init__(self):
self.model = None
# 数学期望
@staticmethod
def mean(X):
"""计算均值
Param: X : list or np.ndarray
Return:
avg : float
"""
avg = 0.0
# ========= show me your code ==================
avg = sum(X) / float(len(X))
# ========= show me your code ==================
return avg
# 标准差(方差)
def stdev(self, X):
"""计算标准差
Param: X : list or np.ndarray
Return:
res : float
"""
res = 0.0
# ========= show me your code ==================
avg = self.mean(X)
res = math.sqrt(sum([pow(x - avg, 2) for x in X]) / float(len(X)))
# ========= show me your code ==================
return res
# 概率密度函数
def gaussian_probability(self, x, mean, stdev):
"""根据均值和标注差计算x符号该高斯分布的概率
Parameters:
----------
x : 输入
mean : 均值
stdev : 标准差
Return:
res : float, x符合的概率值
"""
res = 0.0
# ========= show me your code ==================
exponent = math.exp(-(math.pow(x - mean, 2) /
(2 * math.pow(stdev, 2))))
res = (1 / (math.sqrt(2 * math.pi) * stdev)) * exponent
# ========= show me your code ==================
return res
# 处理X_train
def summarize(self, train_data):
"""计算每个类目下对应数据的均值和标准差
Param: train_data : list
Return : [mean, stdev]
"""
summaries = [0.0, 0.0]
# ========= show me your code ==================
summaries = [(self.mean(i), self.stdev(i)) for i in zip(*train_data)]
# ========= show me your code ==================
return summaries
# 分类别求出数学期望和标准差
def fit(self, X, y):
labels = list(set(y))
data = {label: [] for label in labels}
for f, label in zip(X, y):
data[label].append(f)
self.model = {
label: self.summarize(value) for label, value in data.items()
}
return ‘gaussianNB train done!‘
# 计算概率
def calculate_probabilities(self, input_data):
"""计算数据在各个高斯分布下的概率
Paramter:
input_data : 输入数据
Return:
probabilities : {label : p}
"""
# summaries:{0.0: [(5.0, 0.37),(3.42, 0.40)], 1.0: [(5.8, 0.449),(2.7, 0.27)]}
# input_data:[1.1, 2.2]
probabilities = {}
# ========= show me your code ==================
for label, value in self.model.items():
probabilities[label] = 1
for i in range(len(value)):
mean, stdev = value[i]
probabilities[label] *= self.gaussian_probability(
input_data[i], mean, stdev)
# ========= show me your code ==================
return probabilities
# 类别
def predict(self, X_test):
# {0.0: 2.9680340789325763e-27, 1.0: 3.5749783019849535e-26}
label = sorted(self.calculate_probabilities(X_test).items(), key=lambda x: x[-1])[-1][0]
return label
# 计算得分
def score(self, X_test, y_test):
right = 0
for X, y in zip(X_test, y_test):
label = self.predict(X)
if label == y:
right += 1
return right / float(len(X_test))
from sklearn.naive_bayes import GaussianNB
from sklearn.datasets import load_iris
import pandas as pd
from sklearn.model_selection import train_test_split
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2)
clf = GaussianNB().fit(X_train, y_train)
print ("Classifier Score:", clf.score(X_test, y_test))
model = NaiveBayes()
model.fit(X_train, y_train)
print(model.predict([4.4, 3.2, 1.3, 0.2]))
model.score(X_test, y_test)
以上是关于机器学习基础:朴素贝叶斯小结的主要内容,如果未能解决你的问题,请参考以下文章