约数之和

Posted tztqwq

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了约数之和相关的知识,希望对你有一定的参考价值。

众所周知计算正整数(A)约数和的方法是:

(A)质因数分解为(p_1^{c_1} p_2^{c_2} p_3^{c_3} cdots p_m^{c_m})

(A)的约数和即为((1 + p_1 + p_1^2 + cdots + p_1^{c_1}) * (1 + p_2 + p_2^2 + cdots + p_2^{c_2}) * (1 + p_2 + p_2^2 + cdots + p_2^{c_2}) * cdots * (1 + p_m + p_m^2 + cdots + p_m^{c_m}))

记得李煜东给了个分治求等比数列求和的方法, 大概就是将利用数列是等比的, 利用较短数列的和求出较长数列的和, 具体实现有一些细节.


#include<bits/stdc++.h>
using namespace std;

#define int long long

const int mod = 9901;

int ksm(int a, int b)
{
    int res = 1; a%=mod;
    for(;b;b>>=1, a=(a*a)%mod)
        if(b & 1) res = (res * a) % mod;
    return res % mod;
}

int sum(int p, int c)
{
    if(c == 1) return 1;
    int smer = sum(p, c>>1);
    int now = (smer + smer * ksm(p, c>>1) % mod) % mod;
    if(c&1) now = (now + ksm(p, c-1)) % mod;
    return now % mod;
}

signed main()
{
    
    int a, b; cin >> a >> b;
    
    if(!a)
    {
        cout << 0;
        return 0;
    }
    
    int ans = 1;
    for(int i=2; i<=a; ++i)
    {
        int s = 0;
        while(a%i == 0) ++s, a/=i;
        ans = ans * sum(i, s * b + 1) % mod;
    }
    
    cout << ans % mod;
    return 0;
    
}

以上是关于约数之和的主要内容,如果未能解决你的问题,请参考以下文章

《算法竞赛进阶指南》0x32约数 余数之和

约数之和

19: 约数之和

ZZNU 正约数之和

97. 约数之和(分治)

51nod 1220 约数之和