6-11 求自定类型元素序列的中位数 (25分)
Posted 8023spz
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了6-11 求自定类型元素序列的中位数 (25分)相关的知识,希望对你有一定的参考价值。
本题要求实现一个函数,求N
个集合元素A[]
的中位数,即序列中第⌊大的元素。其中集合元素的类型为自定义的ElementType
。
函数接口定义:
ElementType Median( ElementType A[], int N );
其中给定集合元素存放在数组A[]
中,正整数N
是数组元素个数。该函数须返回N
个A[]
元素的中位数,其值也必须是ElementType
类型。
裁判测试程序样例:
#include <stdio.h>
#define MAXN 10
typedef float ElementType;
ElementType Median( ElementType A[], int N );
int main ()
{
ElementType A[MAXN];
int N, i;
scanf("%d", &N);
for ( i=0; i<N; i++ )
scanf("%f", &A[i]);
printf("%.2f
", Median(A, N));
return 0;
}
/* 你的代码将被嵌在这里 */
输入样例:
3
12.3 34 -5
输出样例:
12.30
冒泡排序会超时,二分插也会,堆排序可以过。
代码:
ElementType Median( ElementType A[], int N ) { int n = N; int me = (n + 1) / 2 - 1; A[n] = A[0]; //初始化 for(int i = n / 2;i > 0;i --) { int t = i; while(t * 2 < n) { int tt = t; if(A[tt * 2] > A[t]) { t = tt * 2; } if(tt * 2 + 1 <= n && A[tt * 2 + 1] > A[t]) { t = tt * 2 + 1; } if(t == tt) break; ElementType temp = A[tt]; A[tt] = A[t]; A[t] = temp; } } //堆排序 while(me) { A[1] = A[n --]; int t = 1; while(t * 2 < n) { int tt = t; if(A[tt * 2] > A[t]) { t = tt * 2; } if(tt * 2 + 1 <= n && A[tt * 2 + 1] > A[t]) { t = tt * 2 + 1; } if(t == tt) break; ElementType temp = A[tt]; A[tt] = A[t]; A[t] = temp; } me --; } return A[1]; }
以上是关于6-11 求自定类型元素序列的中位数 (25分)的主要内容,如果未能解决你的问题,请参考以下文章