大数据部落 -中国专业的第三方数据服务提供商,提供定制化的一站式数据挖掘和统计分析咨询服务
统计分析和数据挖掘咨询服务:y0.cn/teradat(咨询服务请联系官网客服)
【服务场景】
科研项目; 公司项目外包;线上线下一对一培训;数据爬虫采集;学术研究;报告撰写;市场调查。
【大数据部落】提供定制化的一站式数据挖掘和统计分析咨询
欢迎选修我们的R语言数据分析挖掘必知必会课程!
Posted tecdat
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了R语言中的偏最小二乘回归PLS-DA相关的知识,希望对你有一定的参考价值。
主成分回归(PCR)的方法 本质上是使用第一个方法的普通最小二乘(OLS)拟合
但是,在许多情况下,执行类似于PCA的分解要明智得多。
今天,我们将 在Arcene数据集上执行PLS-DA, 其中包含100个观察值和10,000个解释变量。
癌症/无癌标签(编码为-1 / 1)存储在不同的文件中,因此我们可以将其直接附加到完整的数据集,然后使用公式语法来训练模型。
,现在的主要问题是:
关于预处理,我们将使用preProc参数以精确的顺??序删除零方差预测变量,并对所有剩余的变量进行标准化。考虑样本的大小(n= 100),我将选择10倍的重复5倍交叉验证(CV)–大量重复补偿了因减少的折叠次数而产生的高方差–总共进行了50次准确性估算。
此图描绘了CV曲线,在这里我们可以学习从使用不同数量的LV(x轴)训练的模型中获得的平均准确度(y轴,%)。
现在,我们 进行线性判别分析(LDA)进行比较。 我们还可以尝试一些更复杂的模型,例如随机森林(RF)。
最后,我们可以比较PLS-DA,PCA-DA和RF的准确性。
我们将使用caret :: resamples编译这三个模型,并借用ggplot2的绘图功能来比较三种情况下最佳交叉验证模型的50个准确性估计值。
显然,长时间的RF运行并没有转化为出色的性能,恰恰相反。尽管三个模型的平均性能相似,但RF的精度差异要大得多,如果我们要寻找一个健壮的模型,这当然是一个问题。在这种情况下,PLS-DA和PCA-DA表现出最好的性能(准确度为63-95%),并且这两种模型在诊断新血清样品中的癌症方面都表现出色。
总而言之,我们将使用PLS-DA和PCA-DA中预测的可变重要性(ViP)确定十种最能诊断癌症的蛋白质。
上面的PLS-DA ViP图清楚地将V1184与所有其他蛋白质区分开。这可能是一个有趣的癌症生物标志物。当然,必须进行许多其他测试和模型以提供可靠的诊断工具。
大数据部落 -中国专业的第三方数据服务提供商,提供定制化的一站式数据挖掘和统计分析咨询服务
统计分析和数据挖掘咨询服务:y0.cn/teradat(咨询服务请联系官网客服)
【服务场景】
科研项目; 公司项目外包;线上线下一对一培训;数据爬虫采集;学术研究;报告撰写;市场调查。
【大数据部落】提供定制化的一站式数据挖掘和统计分析咨询
欢迎选修我们的R语言数据分析挖掘必知必会课程!
以上是关于R语言中的偏最小二乘回归PLS-DA的主要内容,如果未能解决你的问题,请参考以下文章
R语言普通最小二乘(OLS)回归说明以及构建普通最小二乘(OLS)回归需要满足的四个假设(Normality(正态性)Independence(独立性)Linearity(线性度)方差齐性)