Spring Boot + Redis 实现各种操作,写得太好了吧!
Posted xhmj12
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Spring Boot + Redis 实现各种操作,写得太好了吧!相关的知识,希望对你有一定的参考价值。
为什么很多 SpringBoot 开发者放弃了 Tomcat,选择了 Undertow?
上一篇:SpringBoot+CAS这套单点登录通用方案,打通我司几十个系统,稳的一批!大Pass平台
一、Jedis,Redisson,Lettuce 三者的区别
共同点:都提供了基于 Redis 操作的 Java API,只是封装程度,具体实现稍有不同。
不同点:
1.1、Jedis
是 Redis 的 Java 实现的客户端。支持基本的数据类型如:String、Hash、List、Set、Sorted Set。
特点:使用阻塞的 I/O,方法调用同步,程序流需要等到 socket 处理完 I/O 才能执行,不支持异步操作。Jedis 客户端实例不是线程安全的,需要通过连接池来使用 Jedis。
1.1、Redisson
优点点:分布式锁,分布式集合,可通过 Redis 支持延迟队列。
1.3、 Lettuce
用于线程安全同步,异步和响应使用,支持集群,Sentinel,管道和编码器。
基于 Netty 框架的事件驱动的通信层,其方法调用是异步的。Lettuce 的 API 是线程安全的,所以可以操作单个 Lettuce 连接来完成各种操作。
二、Jedis
三、RedisTemplate
3.1、使用配置
maven 配置引入,(要加上版本号,我这里是因为 Parent 已声明)
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
spring:
redis:
host: 192.168.1.140
port: 6379
password:
database: 15 # 指定redis的分库(共16个0到15)
3.2、使用示例
@Resource
private StringRedisTemplate stringRedisTemplate;
@Override
public CustomersEntity findById(Integer id)
// 需要缓存
// 所有涉及的缓存都需要删除,或者更新
try
String toString = stringRedisTemplate.opsForHash().get(REDIS_CUSTOMERS_ONE, id + "").toString();
if (toString != null)
return JSONUtil.toBean(toString, CustomersEntity.class);
catch (Exception e)
e.printStackTrace();
// 缓存为空的时候,先查,然后缓存redis
Optional<CustomersEntity> byId = customerRepo.findById(id);
if (byId.isPresent())
CustomersEntity customersEntity = byId.get();
try
stringRedisTemplate.opsForHash().put(REDIS_CUSTOMERS_ONE, id + "", JSONUtil.toJsonStr(customersEntity));
catch (Exception e)
e.printStackTrace();
return customersEntity;
return null;
3.3、扩展
3.3.1、spring-boot-starter-data-redis 的依赖包
3.3.2、stringRedisTemplate API(部分展示)
opsForHash --> hash 操作
opsForList --> list 操作
opsForSet --> set 操作
opsForValue --> string 操作
opsForZSet --> Zset 操作
3.3.3 StringRedisTemplate 默认序列化机制
public class StringRedisTemplate extends RedisTemplate<String, String>
/**
* Constructs a new <code>StringRedisTemplate</code> instance. @link #setConnectionFactory(RedisConnectionFactory)
* and @link #afterPropertiesSet() still need to be called.
*/
public StringRedisTemplate()
RedisSerializer<String> stringSerializer = new StringRedisSerializer();
setKeySerializer(stringSerializer);
setValueSerializer(stringSerializer);
setHashKeySerializer(stringSerializer);
setHashValueSerializer(stringSerializer);
四、RedissonClient 操作示例
4.1 基本配置
4.1.1、Maven pom 引入
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
<dependency>
<groupId>org.redisson</groupId>
<artifactId>redisson</artifactId>
<version>3.8.2</version>
<optional>true</optional>
</dependency>
<dependency>
<groupId>org.redisson</groupId>
<artifactId>redisson-spring-boot-starter</artifactId>
<version>LATEST</version>
</dependency>
4.1.2、添加配置文件 Yaml 或者 json 格式
redisson-config.yml
# Redisson 配置
singleServerConfig:
address: "redis://192.168.1.140:6379"
password: null
clientName: null
database: 15 #选择使用哪个数据库0~15
idleConnectionTimeout: 10000
pingTimeout: 1000
connectTimeout: 10000
timeout: 3000
retryAttempts: 3
retryInterval: 1500
reconnectionTimeout: 3000
failedAttempts: 3
subscriptionsPerConnection: 5
subscriptionConnectionMinimumIdleSize: 1
subscriptionConnectionPoolSize: 50
connectionMinimumIdleSize: 32
connectionPoolSize: 64
dnsMonitoringInterval: 5000
#dnsMonitoring: false
threads: 0
nettyThreads: 0
codec:
class: "org.redisson.codec.JsonJacksonCodec"
transportMode: "NIO"
或者,配置 redisson-config.json
"singleServerConfig":
"idleConnectionTimeout": 10000,
"pingTimeout": 1000,
"connectTimeout": 10000,
"timeout": 3000,
"retryAttempts": 3,
"retryInterval": 1500,
"reconnectionTimeout": 3000,
"failedAttempts": 3,
"password": null,
"subscriptionsPerConnection": 5,
"clientName": null,
"address": "redis://192.168.1.140:6379",
"subscriptionConnectionMinimumIdleSize": 1,
"subscriptionConnectionPoolSize": 50,
"connectionMinimumIdleSize": 10,
"connectionPoolSize": 64,
"database": 0,
"dnsMonitoring": false,
"dnsMonitoringInterval": 5000
,
"threads": 0,
"nettyThreads": 0,
"codec": null,
"useLinuxNativeEpoll": false
4.1.3、读取配置
新建读取配置类
@Configuration
public class RedissonConfig
@Bean
public RedissonClient redisson() throws IOException
// 两种读取方式,Config.fromYAML 和 Config.fromJSON
// Config config = Config.fromJSON(RedissonConfig.class.getClassLoader().getResource("redisson-config.json"));
Config config = Config.fromYAML(RedissonConfig.class.getClassLoader().getResource("redisson-config.yml"));
return Redisson.create(config);
或者,在 application.yml 中配置如下
spring:
redis:
redisson:
config: classpath:redisson-config.yaml
4.2 使用示例
@RestController
@RequestMapping("/")
public class TeController
@Autowired
private RedissonClient redissonClient;
static long i = 20;
static long sum = 300;
// ========================== String =======================
@GetMapping("/set/key")
public String s1(@PathVariable String key)
// 设置字符串
RBucket<String> keyObj = redissonClient.getBucket(key);
keyObj.set(key + "1-v1");
return key;
@GetMapping("/get/key")
public String g1(@PathVariable String key)
// 设置字符串
RBucket<String> keyObj = redissonClient.getBucket(key);
String s = keyObj.get();
return s;
// ========================== hash =======================-=
@GetMapping("/hset/key")
public String h1(@PathVariable String key)
Ur ur = new Ur();
ur.setId(MathUtil.randomLong(1,20));
ur.setName(key);
// 存放 Hash
RMap<String, Ur> ss = redissonClient.getMap("UR");
ss.put(ur.getId().toString(), ur);
return ur.toString();
@GetMapping("/hget/id")
public String h2(@PathVariable String id)
// hash 查询
RMap<String, Ur> ss = redissonClient.getMap("UR");
Ur ur = ss.get(id);
return ur.toString();
// 查询所有的 keys
@GetMapping("/all")
public String all()
RKeys keys = redissonClient.getKeys();
Iterable<String> keys1 = keys.getKeys();
keys1.forEach(System.out::println);
return keys.toString();
// ================== ==============读写锁测试 =============================
@GetMapping("/rw/set/key")
public void rw_set()
// RedissonLock.
RBucket<String> ls_count = redissonClient.getBucket("LS_COUNT");
ls_count.set("300",360000000l, TimeUnit.SECONDS);
// 减法运算
@GetMapping("/jf")
public void jf()
String key = "S_COUNT";
// RAtomicLong atomicLong = redissonClient.getAtomicLong(key);
// atomicLong.set(sum);
// long l = atomicLong.decrementAndGet();
// System.out.println(l);
RAtomicLong atomicLong = redissonClient.getAtomicLong(key);
if (!atomicLong.isExists())
atomicLong.set(300l);
while (i == 0)
if (atomicLong.get() > 0)
long l = atomicLong.getAndDecrement();
try
Thread.sleep(1000l);
catch (InterruptedException e)
e.printStackTrace();
i --;
System.out.println(Thread.currentThread().getName() + "->" + i + "->" + l);
@GetMapping("/rw/get")
public String rw_get()
String key = "S_COUNT";
Runnable r = new Runnable()
@Override
public void run()
RAtomicLong atomicLong = redissonClient.getAtomicLong(key);
if (!atomicLong.isExists())
atomicLong.set(300l);
if (atomicLong.get() > 0)
long l = atomicLong.getAndDecrement();
i --;
System.out.println(Thread.currentThread().getName() + "->" + i + "->" + l);
;
while (i != 0)
new Thread(r).start();
// new Thread(r).run();
// new Thread(r).run();
// new Thread(r).run();
// new Thread(r).run();
RBucket<String> bucket = redissonClient.getBucket(key);
String s = bucket.get();
System.out.println("================线程已结束================================" + s);
return s;
4.3 扩展
4.3.1 丰富的 jar 支持,尤其是对 Netty NIO 框架
4.3.2 丰富的配置机制选择,这里是详细的配置说明
关于序列化机制中,就有很多
4.3.3 API 支持(部分展示),具体的 Redis --> RedissonClient , 可查看这里
4.3.4 轻便的丰富的锁机制的实现
4.3.4.1 Lock
4.3.4.2 Fair Lock
4.3.4.3 MultiLock
4.3.4.4 RedLock
4.3.4.5 ReadWriteLock
4.3.4.6 Semaphore
4.3.4.7 PermitExpirableSemaphore
4.3.4.8 CountDownLatch
五、基于注解实现的 Redis 缓存
5.1 Maven 和 YML 配置
参考 RedisTemplate 配置
另外,还需要额外的配置类
// todo 定义序列化,解决乱码问题
@EnableCaching
@Configuration
@ConfigurationProperties(prefix = "spring.cache.redis")
public class RedisCacheConfig
private Duration timeToLive = Duration.ZERO;
public void setTimeToLive(Duration timeToLive)
this.timeToLive = timeToLive;
@Bean
public CacheManager cacheManager(RedisConnectionFactory factory)
RedisSerializer<String> redisSerializer = new StringRedisSerializer();
Jackson2JsonRedisSerializer jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer(Object.class);
// 解决查询缓存转换异常的问题
ObjectMapper om = new ObjectMapper();
om.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);
om.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL);
jackson2JsonRedisSerializer.setObjectMapper(om);
// 配置序列化(解决乱码的问题)
RedisCacheConfiguration config = RedisCacheConfiguration.defaultCacheConfig()
.entryTtl(timeToLive)
.serializeKeysWith(RedisSerializationContext.SerializationPair.fromSerializer(redisSerializer))
.serializeValuesWith(RedisSerializationContext.SerializationPair.fromSerializer(jackson2JsonRedisSerializer))
.disableCachingNullValues();
RedisCacheManager cacheManager = RedisCacheManager.builder(factory)
.cacheDefaults(config)
.build();
return cacheManager;
5.2 使用示例
@Transactional
@Service
public class ReImpl implements RedisService
@Resource
private CustomerRepo customerRepo;
@Resource
private StringRedisTemplate stringRedisTemplate;
public static final String REDIS_CUSTOMERS_ONE = "Customers";
public static final String REDIS_CUSTOMERS_ALL = "allList";
// =====================================================================使用Spring cahce 注解方式实现缓存
// ==================================单个操作
@Override
@Cacheable(value = "cache:customer", unless = "null == #result",key = "#id")
public CustomersEntity cacheOne(Integer id)
final Optional<CustomersEntity> byId = customerRepo.findById(id);
return byId.isPresent() ? byId.get() : null;
@Override
@Cacheable(value = "cache:customer", unless = "null == #result", key = "#id")
public CustomersEntity cacheOne2(Integer id)
final Optional<CustomersEntity> byId = customerRepo.findById(id);
return byId.isPresent() ? byId.get() : null;
// todo 自定义redis缓存的key,
@Override
@Cacheable(value = "cache:customer", unless = "null == #result", key = "#root.methodName + '.' + #id")
public CustomersEntity cacheOne3(Integer id)
final Optional<CustomersEntity> byId = customerRepo.findById(id);
return byId.isPresent() ? byId.get() : null;
// todo 这里缓存到redis,还有响应页面是String(加了很多转义符\\,),不是Json格式
@Override
@Cacheable(value = "cache:customer", unless = "null == #result", key = "#root.methodName + '.' + #id")
public String cacheOne4(Integer id)
final Optional<CustomersEntity> byId = customerRepo.findById(id);
return byId.map(JSONUtil::toJsonStr).orElse(null);
// todo 缓存json,不乱码已处理好,调整序列化和反序列化
@Override
@Cacheable(value = "cache:customer", unless = "null == #result", key = "#root.methodName + '.' + #id")
public CustomersEntity cacheOne5(Integer id)
Optional<CustomersEntity> byId = customerRepo.findById(id);
return byId.filter(obj -> !StrUtil.isBlankIfStr(obj)).orElse(null);
// ==================================删除缓存
@Override
@CacheEvict(value = "cache:customer", key = "'cacheOne5' + '.' + #id")
public Object del(Integer id)
// 删除缓存后的逻辑
return null;
@Override
@CacheEvict(value = "cache:customer",allEntries = true)
public void del()
@CacheEvict(value = "cache:all",allEntries = true)
public void delall()
// ==================List操作
@Override
@Cacheable(value = "cache:all")
public List<CustomersEntity> cacheList()
List<CustomersEntity> all = customerRepo.findAll();
return all;
// todo 先查询缓存,再校验是否一致,然后更新操作,比较实用,要清楚缓存的数据格式(明确业务和缓存模型数据)
@Override
@CachePut(value = "cache:all",unless = "null == #result",key = "#root.methodName")
public List<CustomersEntity> cacheList2()
List<CustomersEntity> all = customerRepo.findAll();
return all;
5.3 扩展
基于 spring 缓存实现
https://blog.csdn.net/qq_42105629/article/details/102589319
· END ·
热门推荐:
PS:如果觉得我的分享不错,欢迎大家随手点赞、转发、在看
以上是关于Spring Boot + Redis 实现各种操作,写得太好了吧!的主要内容,如果未能解决你的问题,请参考以下文章
Spring Boot + Redis 实现各种操作,写得太好了吧!
Spring Boot + Redis 实现各种操作,写得太好了吧!