如何将数据从Kafka传递到Spark Streaming?
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了如何将数据从Kafka传递到Spark Streaming?相关的知识,希望对你有一定的参考价值。
我正在尝试将数据从kafka传递到spark streaming。
这就是我到目前为止所做的事情:
- 安装了
kafka
和spark
- 使用默认属性config启动
zookeeper
- 使用默认属性config启动
kafka server
- 开始
kafka producer
- 开始
kafka consumer
- 从生产者发送消息到消费者。工作良好。
- 写了kafka-spark.py来接收从kafka到spark的消息。
- 我尝试运行
./bin/spark-submit examples/src/main/python/kafka-spark.py
- 我收到一个错误。
卡夫卡-spark.朋友 -
from __future__ import print_function
import sys
from pyspark.streaming import StreamingContext
from pyspark import SparkContext,SparkConf
from pyspark.streaming.kafka import KafkaUtils
if __name__ == "__main__":
#conf = SparkConf().setAppName("Kafka-Spark").setMaster("spark://127.0.0.1:7077")
conf = SparkConf().setAppName("Kafka-Spark")
#sc = SparkContext(appName="KafkaSpark")
sc = SparkContext(conf=conf)
stream=StreamingContext(sc,1)
map1={'spark-kafka':1}
kafkaStream = KafkaUtils.createStream(stream, 'localhost:9092', "name", map1) #tried with localhost:2181 too
print("kafkastream=",kafkaStream)
sc.stop()
完整日志包括运行spark-kafka.py时出错:
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
16/01/18 13:05:33 INFO SparkContext: Running Spark version 1.6.0
16/01/18 13:05:33 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
16/01/18 13:05:33 INFO SecurityManager: Changing view acls to: username
16/01/18 13:05:33 INFO SecurityManager: Changing modify acls to: username
16/01/18 13:05:33 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(username); users with modify permissions: Set(username)
16/01/18 13:05:33 INFO Utils: Successfully started service 'sparkDriver' on port 54446.
16/01/18 13:05:34 INFO Slf4jLogger: Slf4jLogger started
16/01/18 13:05:34 INFO Remoting: Starting remoting
16/01/18 13:05:34 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriverActorSystem@127.0.0.1:50386]
16/01/18 13:05:34 INFO Utils: Successfully started service 'sparkDriverActorSystem' on port 50386.
16/01/18 13:05:34 INFO SparkEnv: Registering MapOutputTracker
16/01/18 13:05:34 INFO SparkEnv: Registering BlockManagerMaster
16/01/18 13:05:34 INFO DiskBlockManager: Created local directory at /tmp/blockmgr-f5490271-cdb7-467d-a915-4f5ccab57f0e
16/01/18 13:05:34 INFO MemoryStore: MemoryStore started with capacity 511.1 MB
16/01/18 13:05:34 INFO SparkEnv: Registering OutputCommitCoordinator
16/01/18 13:05:34 INFO Server: jetty-8.y.z-SNAPSHOT
16/01/18 13:05:34 INFO AbstractConnector: Started SelectChannelConnector@0.0.0.0:4040
16/01/18 13:05:34 INFO Utils: Successfully started service 'SparkUI' on port 4040.
16/01/18 13:05:34 INFO SparkUI: Started SparkUI at http://127.0.0.1:4040
Java HotSpot(TM) Server VM warning: You have loaded library /tmp/libnetty-transport-native-epoll561240765619860252.so which might have disabled stack guard. The VM will try to fix the stack guard now.
It's highly recommended that you fix the library with 'execstack -c <libfile>', or link it with '-z noexecstack'.
16/01/18 13:05:34 INFO Utils: Copying ~/Dropbox/Work/ITNow/spark/spark-1.6.0/examples/src/main/python/kafka-spark.py to /tmp/spark-18227081-a1c8-43f2-8ca7-cfc4751f023f/userFiles-e93fc252-0ba1-42b7-b4fa-2e46f3a0601e/kafka-spark.py
16/01/18 13:05:34 INFO SparkContext: Added file file:~/Dropbox/Work/ITNow/spark/spark-1.6.0/examples/src/main/python/kafka-spark.py at file:~/Dropbox/Work/ITNow/spark/spark-1.6.0/examples/src/main/python/kafka-spark.py with timestamp 1453118734892
16/01/18 13:05:35 INFO Executor: Starting executor ID driver on host localhost
16/01/18 13:05:35 INFO Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port 58970.
16/01/18 13:05:35 INFO NettyBlockTransferService: Server created on 58970
16/01/18 13:05:35 INFO BlockManagerMaster: Trying to register BlockManager
16/01/18 13:05:35 INFO BlockManagerMasterEndpoint: Registering block manager localhost:58970 with 511.1 MB RAM, BlockManagerId(driver, localhost, 58970)
16/01/18 13:05:35 INFO BlockManagerMaster: Registered BlockManager
________________________________________________________________________________________________
Spark Streaming's Kafka libraries not found in class path. Try one of the following.
1. Include the Kafka library and its dependencies with in the
spark-submit command as
$ bin/spark-submit --packages org.apache.spark:spark-streaming-kafka:1.6.0 ...
2. Download the JAR of the artifact from Maven Central http://search.maven.org/,
Group Id = org.apache.spark, Artifact Id = spark-streaming-kafka-assembly, Version = 1.6.0.
Then, include the jar in the spark-submit command as
$ bin/spark-submit --jars <spark-streaming-kafka-assembly.jar> ...
________________________________________________________________________________________________
Traceback (most recent call last):
File "~/Dropbox/Work/ITNow/spark/spark-1.6.0/examples/src/main/python/kafka-spark.py", line 33, in <module>
kafkaStream = KafkaUtils.createStream(stream, 'localhost:9092', "name", map1)
File "~/Dropbox/Work/ITNow/spark/spark-1.6.0/python/lib/pyspark.zip/pyspark/streaming/kafka.py", line 80, in createStream
py4j.protocol.Py4JJavaError: An error occurred while calling o22.loadClass.
: java.lang.ClassNotFoundException: org.apache.spark.streaming.kafka.KafkaUtilsPythonHelper
at java.net.URLClassLoader.findClass(URLClassLoader.java:381)
at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:497)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:381)
at py4j.Gateway.invoke(Gateway.java:259)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:209)
at java.lang.Thread.run(Thread.java:745)
16/01/18 13:05:35 INFO SparkContext: Invoking stop() from shutdown hook
16/01/18 13:05:35 INFO ContextHandler: stopped o.e.j.s.ServletContextHandler{/metrics/json,null}
16/01/18 13:05:35 INFO ContextHandler: stopped o.e.j.s.ServletContextHandler{/stages/stage/kill,null}
16/01/18 13:05:35 INFO ContextHandler: stopped o.e.j.s.ServletContextHandler{/api,null}
16/01/18 13:05:35 INFO ContextHandler: stopped o.e.j.s.ServletContextHandler{/,null}
16/01/18 13:05:35 INFO ContextHandler: stopped o.e.j.s.ServletContextHandler{/static,null}
16/01/18 13:05:35 INFO ContextHandler: stopped o.e.j.s.ServletContextHandler{/executors/threadDump/json,null}
16/01/18 13:05:35 INFO ContextHandler: stopped o.e.j.s.ServletContextHandler{/executors/threadDump,null}
16/01/18 13:05:35 INFO ContextHandler: stopped o.e.j.s.ServletContextHandler{/executors/json,null}
16/01/18 13:05:35 INFO ContextHandler: stopped o.e.j.s.ServletContextHandler{/executors,null}
16/01/18 13:05:35 INFO ContextHandler: stopped o.e.j.s.ServletContextHandler{/environment/json,null}
16/01/18 13:05:35 INFO ContextHandler: stopped o.e.j.s.ServletContextHandler{/environment,null}
16/01/18 13:05:35 INFO ContextHandler: stopped o.e.j.s.ServletContextHandler{/storage/rdd/json,null}
16/01/18 13:05:35 INFO ContextHandler: stopped o.e.j.s.ServletContextHandler{/storage/rdd,null}
16/01/18 13:05:35 INFO ContextHandler: stopped o.e.j.s.ServletContextHandler{/storage/json,null}
16/01/18 13:05:35 INFO ContextHandler: stopped o.e.j.s.ServletContextHandler{/storage,null}
16/01/18 13:05:35 INFO ContextHandler: stopped o.e.j.s.ServletContextHandler{/stages/pool/json,null}
16/01/18 13:05:35 INFO ContextHandler: stopped o.e.j.s.ServletContextHandler{/stages/pool,null}
16/01/18 13:05:35 INFO ContextHandler: stopped o.e.j.s.ServletContextHandler{/stages/stage/json,null}
16/01/18 13:05:35 INFO ContextHandler: stopped o.e.j.s.ServletContextHandler{/stages/stage,null}
16/01/18 13:05:35 INFO ContextHandler: stopped o.e.j.s.ServletContextHandler{/stages/json,null}
16/01/18 13:05:35 INFO ContextHandler: stopped o.e.j.s.ServletContextHandler{/stages,null}
16/01/18 13:05:35 INFO ContextHandler: stopped o.e.j.s.ServletContextHandler{/jobs/job/json,null}
16/01/18 13:05:35 INFO ContextHandler: stopped o.e.j.s.ServletContextHandler{/jobs/job,null}
16/01/18 13:05:35 INFO ContextHandler: stopped o.e.j.s.ServletContextHandler{/jobs/json,null}
16/01/18 13:05:35 INFO ContextHandler: stopped o.e.j.s.ServletContextHandler{/jobs,null}
16/01/18 13:05:35 INFO SparkUI: Stopped Spark web UI at http://127.0.0.1:4040
16/01/18 13:05:35 INFO MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped!
16/01/18 13:05:35 INFO MemoryStore: MemoryStore cleared
16/01/18 13:05:35 INFO BlockManager: BlockManager stopped
16/01/18 13:05:35 INFO BlockManagerMaster: BlockManagerMaster stopped
16/01/18 13:05:35 INFO OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: OutputCommitCoordinator stopped!
16/01/18 13:05:35 INFO RemoteActorRefProvider$RemotingTerminator: Shutting down remote daemon.
16/01/18 13:05:35 INFO RemoteActorRefProvider$RemotingTerminator: Remote daemon shut down; proceeding with flushing remote transports.
16/01/18 13:05:35 INFO SparkContext: Successfully stopped SparkContext
16/01/18 13:05:35 INFO ShutdownHookManager: Shutdown hook called
16/01/18 13:05:35 INFO ShutdownHookManager: Deleting directory /tmp/spark-18227081-a1c8-43f2-8ca7-cfc4751f023f
16/01/18 13:05:35 INFO ShutdownHookManager: Deleting directory /tmp/spark-18227081-a1c8-43f2-8ca7-cfc4751f023f/pyspark-fcd47a97-57ef-46c3-bb16-357632580334
编辑
在运行./bin/spark-submit --jars spark-streaming-kafka-assembly_2.10-1.6.0.jar examples/src/main/python/kafka-spark.py
时,我得到HEXADECIMAL位置而不是实际的字符串:
kafkastream= <pyspark.streaming.dstream.TransformedDStream object at 0x7fd6c4dad150>
知道我做错了什么吗?我真的很喜欢kafka和spark,所以我需要一些帮助。谢谢!
答案
您需要在工作中提交spark-streaming-kafka-assembly _ * .jar:
spark-submit --jars spark-streaming-kafka-assembly_2.10-1.5.2.jar ./spark-kafka.py
另一答案
或者,如果您还要同时指定要分配的资源:
spark-submit --deploy-mode cluster --master yarn --num-executors 5 --executor-cores 5 --executor-memory 20g --jars spark-streaming-kafka-assembly_2.10-1.6.0.jar ./spark-kafka.py
如果你想在Jupyter-notebook中运行你的代码,那么这可能会有所帮助:
from __future__ import print_function
import sys
from pyspark.streaming import StreamingContext
from pyspark import SparkContext,SparkConf
from pyspark.streaming.kafka import KafkaUtils
if __name__ == "__main__":
os.environ['PYSPARK_SUBMIT_ARGS'] = '--jars spark-streaming-kafka-assembly_2.10-1.6.0.jar pyspark-shell' #note that the "pyspark-shell" part is very important!!.
#conf = SparkConf().setAppName("Kafka-Spark").setMaster("spark://127.0.0.1:7077")
conf = SparkConf().setAppName("Kafka-Spark")
#sc = SparkContext(appName="KafkaSpark")
sc = SparkContext(conf=conf)
stream=StreamingContext(sc,1)
map1={'spark-kafka':1}
kafkaStream = KafkaUtils.createStream(stream, 'localhost:9092', "name", map1) #tried with localhost:2181 too
print("kafkastream=",kafkaStream)
sc.stop()
请注意__main__
中以下行的介绍:
os.environ['PYSPARK_SUBMIT_ARGS'] = '--jars spark-streaming-kafka-assembly_2.10-1.6.0.jar pyspark-shell'
资料来源:https://github.com/jupyter/docker-stacks/issues/154
另一答案
要打印DStream,spark为Python提供了一个方法pprint。所以你会用
kafkastream.pprint()
以上是关于如何将数据从Kafka传递到Spark Streaming?的主要内容,如果未能解决你的问题,请参考以下文章
如何将 Spark 消耗的最新偏移量保存到 ZK 或 Kafka 并在重启后可以读取