模板 - 组合数

Posted gdsfg112

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了模板 - 组合数相关的知识,希望对你有一定的参考价值。

 

一般来说只是需要用一个组合数,当MOD大于n和m的时候可以这样求:

const ll MOD = 1e9 + 7;
const int MAXN = 1e6;

ll inv[MAXN + 5], fac[MAXN + 5], invfac[MAXN + 5];

void init_C(int n) {
    inv[1] = 1;
    for(int i = 2; i <= n; i++)
        inv[i] = inv[MOD % i] * (MOD - MOD / i) % MOD;
    fac[0] = 1, invfac[0] = 1;
    for(int i = 1; i <= n; i++) {
        fac[i] = fac[i - 1] * i % MOD;
        invfac[i] = invfac[i - 1] * inv[i] % MOD;
    }
}

inline ll C(ll n, ll m) {
    if(n < m)
        return 0;
    return fac[n] * invfac[n - m] % MOD * invfac[m] % MOD;
}

错位排列,D[i]表示i个(不同的)元素全部不在应该在的位置(升序/降序等唯一指定位置)的种类数,可以通过dp求出来,但是还是抄模板方便。

const ll MOD = 1e9 + 7;
const int MAXN = 1e6;

//特殊定义D[0]为1
D[0] = 1, D[1] = 0;
for(int i = 2; i <= MAXN; i++) {
    if(i & 1) {
        D[i] = ((ll)i * D[i - 1] - 1ll) % MOD;
        if(D[i] < 0)
            D[i] += MOD;
    } else
        D[i] = ((ll)i * D[i - 1] + 1ll) % MOD;
}

模板 - 组合数

 

一般来说只是需要用一个组合2477203708数,当MOD大于n和m的时候可以这样求:

const ll MOD = 1e9 + 7;
const int MAXN = 1e6;

ll inv[MAXN + 5], fac[MAXN + 5], invfac[MAXN + 5];

void init_C(int n) {
    inv[1] = 1;
    for(int i = 2; i <= n; i++)
        inv[i] = inv[MOD % i] * (MOD - MOD / i) % MOD;
    fac[0] = 1, invfac[0] = 1;
    for(int i = 1; i <= n; i++) {
        fac[i] = fac[i - 1] * i % MOD;
        invfac[i] = invfac[i - 1] * inv[i] % MOD;
    }
}

inline ll C(ll n, ll m) {
    if(n < m)
        return 0;
    return fac[n] * invfac[n - m] % MOD * invfac[m] % MOD;
}

错位排列,D[i]表示i个(不同的)元素全部不在应该在的位置(升序/降序等唯一指定位置)的种类数,可以通过dp求出来,但是还是抄模板方便。

const ll MOD = 1e9 + 7;
const int MAXN = 1e6;

//特殊定义D[0]为1
D[0] = 1, D[1] = 0;
for(int i = 2; i <= MAXN; i++) {
    if(i & 1) {
        D[i] = ((ll)i * D[i - 1] - 1ll) % MOD;
        if(D[i] < 0)
            D[i] += MOD;
    } else
        D[i] = ((ll)i * D[i - 1] + 1ll) % MOD;
}
技术图片技术图片技术图片技术图片技术图片技术图片技术图片技术图片技术图片技术图片技术图片

以上是关于模板 - 组合数的主要内容,如果未能解决你的问题,请参考以下文章

组合数模板

模板 - 组合数

HDU 6114 Chess逆元+组合数(组合数模板题)

模板组合数学

组合数模板

组合数模板